Wn Mass mn X-axis Xn Y-axis Yn Z-axis Zn Z X Wa 0.88 kg 65 mm 0 mm 5 mm 111 Wb 4.35 kg 150 mm 0 mm 42.5 mm Y 210 Y Wc 0.795 kg 150 mm 111 mm 42.5 mm Wd 1.5 kg 150 mm 210 mm 42.5 mm n = a, b, c, d 3 Composite Center of Gravity Calculation m3 = mn = 0.88 + 4.35 + 0.795 + 1.5 = 7.525 kg m3 1 X = x (mn x xn) 7.525 1 = (0.88 x 65 + 4.35 x 150 + 0.795 x 150 + 1.5 x 150) = 140.1 mm m3 1 Y = x
Load Blocking Mass and Center of Gravity for Each Workpiece 5 42.5 65 150 Center of gravity Mass mn Workpiece Wn Y-axis Yn X-axis Xn Z-axis Zn Z X Wa 0 mm 5 mm 0.88 kg 65 mm 111 210 Wb 0 mm 42.5 mm 4.35 kg 150 mm Y Y Wc 111 mm 42.5 mm 0.795 kg 150 mm Wd 210 mm 42.5 mm 0.5 kg 150 mm n = a, b, c, d 3.
Wn Y Y-axis Yn X-axis Xn Z-axis Zn X Wa 65 mm 0 mm 5 mm 0.88 kg 210 65 150 111 Z Wb 150 mm 0 mm 42.5 mm 4.35 kg Wc 150 mm 111 mm 42.5 mm 0.795 kg Wd 150 mm 210 mm 42.5 mm 0.5 kg Y 42.5 5 n = a, b, c, d 3.
Wn Y X-axis Xn Y-axis Yn Z-axis Zn X Wa 5 mm 0 mm 65 mm 0.88 kg 210 65 150 111 Z Wb 42.5 mm 0 mm 150 mm 4.35 kg Wc 42.5 mm 111 mm 150 mm 0.795 kg Wd 42.5 mm 210 mm 150 mm 0. 5kg Y 42.5 5 n = a, b, c, d 3 Composite Center of Gravity Calculation m1 = mn = 0.88 + 4.35 + 0.795 + 0.5 = 6.525 kg 1 m1 X = x (mn x xn) 1 6.525 = (0.88 x 65 + 4.35 x 150 + 0.795 x 150 + 0.5 x 150) = 138.5 mm 1 m1 Y
(Wn) Mass (mn) Y-axis Yn Z-axis Zn X-axis Xn LXS LXS Z X Wa 5 mm 0 mm 0.88 kg 65 mm LC6m LC6m 111 Wb 42.5 mm 0 mm 4.35 kg 150 mm Y 210 Y Wc LZm LZm 42.5 mm 111 mm 0.795 kg 150 mm Wd 42.5 mm 210 mm 1.0 kg 150 mm LC3F2 LC3F2 n = a, b, c, d 3 Calculation of Composite Center of Gravity Xm Xm m3 = mn = 0.88 + 4.35 + 0.795 + 1.0 = 7.025 kg D-m D-m E-MY E-MY 1 m3 X = x (mn x xn) 1 7.025 = (0.88
(Wn) Weight (mn) Y-axis Yn Z-axis Zn X-axis Xn Z X Wa 5 mm 0.88 kg 0 mm 65 mm 111 Wb 42.5 mm 4.35 kg 0 mm 150 mm Y 210 Y Wc 42.5 mm 0.795 kg 111 mm 150 mm Wd 42.5 mm 1.0 kg 210 mm 150 mm n = a, b, c, d 3 Calculation of composite center of gravity m3 = mn = 0.88 + 4.35 + 0.795 + 1.0 = 7.025 kg 1 m3 X = x (mn x xn) 1 7.025 = (0.88 x 65 + 4.35 x 150 + 0.795 x 150 + 1.0 x 150) = 139.4 mm 1
Wn Mass mn X-axis Xn Y-axis Yn Z-axis Zn Z X Wa 0.88kg 65mm 0mm 5mm 111 Wb 4.35kg 150mm 0mm 42.5mm Y 210 Y Wc 0.795kg 150mm 111mm 42.5mm Wd 0.5kg 150mm 210mm 42.5mm n = a, b, c, d 3 Calculation of composite center of gravity m = mn = 0.88 + 4.35 + 0.795 + 0.5 = 6.525kg 1 m X = x (mn x xn) 1 6.525 = (0.88 x 65 + 4.35 x 150 + 0.795 x 150 + 0.5 x 150) = 138.5mm 1 m Y = x (mn x yn) 1 6.525
Wn Mass mn X-axis Xn Y-axis Yn Z-axis Zn Z X Wa 0.88kg 65mm 0mm 5mm 111 Wb 4.35kg 150mm 0mm 42.5mm Y 210 Y Wc 0.795kg 150mm 111mm 42.5mm Wd 1.5kg 150mm 210mm 42.5mm n = a, b, c, d 3 Composite center of gravity calculation m = mn = 0.88 + 4.35 + 0.795 + 1.5 = 7.525kg 1 m X = x (mn x xn) 1 7.525 = (0.88 x 65 + 4.35 x 150 + 0.795 x 150 + 1.5 x 150) = 140.1mm 1 m Y = x (mn x yn) 1 7.525
Mass mn Y Y-axis Yn Z-axis Zn X-axis Xn X Wa 5mm 0mm 65mm 0.88kg 210 65 111 Z Wb 42.5mm 0mm 150mm 4.35kg 150 Wc 42.5mm 111mm 150mm 0.795kg Wd 42.5mm 210mm 150mm 0.5kg Y 42.5 5 n = a, b, c, d 3 Composite center of gravity calculation m = mn = 0.88 + 4.35 + 0.795 + 0.5 = 6.525kg 1 m X = x (mn x Xn) 1 6.525 = (0.88 x 65 + 4.35 x 150 + 0.795 x 150 + 0.5 x 150) = 138.5mm 1 m Y = x (mn x
Wn Weight mn X-axis Xn Y-axis Yn Z-axis Zn Z X Wa 0.88kg 65mm 0mm 5mm 111 Wb 4.35kg 150mm 0mm 42.5mm Y 210 Y Wc 0.795kg 150mm 111mm 42.5mm Wd 1.5kg 150mm 210mm 42.5mm n = a, b, c, d 3 Composite center of gravity calculation m3 = mn = 0.88 + 4.35 + 0.795 + 1.5 = 7.525kg 1 m3 X = x (mn x xn) 1 7.525 = (0.88 x 65 + 4.35 x 150 + 0.795 x 150 + 1.5 x 150) = 140.1mm 1 m3 Y = x (mn x yn) 1 7.525
Wn Y Y-axis Yn Z-axis Zn X-axis Xn X Wa 65 mm 0 mm 5 mm 0.88 kg 210 65 150 111 Z Wb 150 mm 0 mm 42.5 mm 4.35 kg Wc 150 mm 111 mm 42.5 mm 0.795 kg Wd 150 mm 210 mm 42.5 mm 0.5 kg Y 42.5 5 n = a, b, c, d 3.
Wn Weight mn X-axis Xn Y-axis Yn Z-axis Zn Z X Wa 0.88 kg 65 mm 0 mm 5 mm 111 Wb 4.35 kg 150 mm 0 mm 42.5 mm Y 210 Y Wc 0.795 kg 150 mm 111 mm 42.5 mm Wd 1.5 kg 150 mm 210 mm 42.5 mm n = a, b, c, d 3.
Model: MSQ, Precision: B (Basic), Size: 70, Suffix: R (Shock Absorbers)
Oscillation Angle A: [Arbitrary Setting Type] Free setting type, Type: Rotary Table 2-Point Stop, Main Body Shape: Block Shape, Operation Method: Double Rack, Rigidity Accuracy: Standard, Environment, Applications: Standard, Allowable Kinetic Energy (Range)(J): 1 to Less than 50, Valves: Not Provided, Allowable Kinetic Energy(J): 1.100, Format: With internal shock absorber, Size: 70, Switch
The MSQ compact rotary table is ideal for material transfer applications. It incorporates load bearings and a mounting face with a rack-and-pinion style rotary actuator. The seven sizes are 10, 20, 30, 50, 70, 100, and 200 with rotational adjustments from 0-190 degrees, and auto switch capability. Additional features include a hollow shaft and direct load mounting possibility. Rotary table
The MSQ compact rotary table is ideal for material transfer applications. It incorporates load bearings and a mounting face with a rack-and-pinion style rotary actuator. The seven sizes are 10, 20, 30, 50, 70, 100, and 200 with rotational adjustments from 0-190 degrees, and auto switch capability. Additional features include a hollow shaft and direct load mounting possibility. Rotary table
The MSQ compact rotary table is ideal for material transfer applications. It incorporates load bearings and a mounting face with a rack-and-pinion style rotary actuator. The seven sizes are 10, 20, 30, 50, 70, 100, and 200 with rotational adjustments from 0-190 degrees, and auto switch capability. Additional features include a hollow shaft and direct load mounting possibility. Rotary table
[Or None in the Case of No Switch], Thread Type: XN (NPT 1/8)
[Or None in the Case of No Switch], Thread Type: XN (NPT 1/8)
[Or None in the Case of No Switch], Thread Type: XN (NPT 1/8)