A Q value of approximately 620 Nl/min is obtained. 1500 2000 1500 2000 4.The 620 Nl/min.theoretical value is multiplied by 1.4 Q = 620 Nl/min. 1.4 Q = 870 Nl/min. 160 1000 1000 Maximum air consumption Q [Nl/min.]
Mr = 1 x 9.8 (30 + 10.5)/1000 = 0.39 A = 10.5 Examine My. My = 1 x 9.8 (10 + 30)/1000 = 0.39 A3 = 30 Find the static moment M (Nm). M = W x 9.8 (Ln + An)/1000 Corrected value of moment center position distance An: Table 3 Find the allowable static moment Ma (Nm).
To Travel amount per 1 command pulse (P=1m) by actuator lead (L = 6mm) and pulley ratio (n1/n2 = 1/1) = 1 1048576 1 1000 Pn210 Pn20E 1 6 1/1 = 1048576 Pn210 Pn20E 6 1000 1 = 1048576 Pn210 Pn20E 6000 1 = 65536 Pn210 Pn20E 375 1 *1 For pulley ratio, refer to Lead of LECYM Operation Manual (Simplified Edition),section 4.4.1.
To Travel amount per 1 command pulse (P=1m) by actuator lead (L = 6mm) and pulley ratio (n1/n2 = 1/1) = 1 1048576 1 1000 Pn210 Pn20E 1 6 1/1 = 1048576 Pn210 Pn20E 6 1000 1 = 1048576 Pn210 Pn20E 6000 1 = 65536 Pn210 Pn20E 375 1 *1 For pulley ratio, refer to Lead of LECYU Operation Manual (Simplified Edition),section 4.4.1.
Modbus RTU protocol (Hexadecimal notation) Request data 01 08 0 1234 ED7C Response data (normal response) 01 08 0 1234 ED7C (Binary notation) Response data 0001 1000 0 0 0001 0010 0011 0100 1110 1101 0111 1100 Response data (normal response) 0001 1000 0 0 0001 0010 0011 0100 1110 1101 0111 1100 For correspondence between ASCII notation and ASCII hexadecimal notation, refer to the 8.4 ASCII
SUP = 0.2 MPa 0.2 0.2 0.2 0.1 0.1 0.1 0 0 0 50 100 150 200 0 Discharge (mL/min) 0 Discharge (mL/min) 200 400 600 800 1000 0 Discharge (mL/min) 200 400 600 800 1000 Air Consumption: Built-in Solenoid Valve/Air Operated Calculation of Air Consumption Air Consumption 45 Find the air consumption for operation with a 5 Hz switching cycle and pilot air pressure of 0.35 MPa from the air consumption
Mr = 1 x 9.8 (30 + 10.5)/1000 = 0.39 A6 = 10.5 Mar = 36 Mrmax = 36 K = 1 = 1 '2 = 0.39/36 = 0.011 Examine My. My = 1 x 9.8 (10 + 30)/1000 = 0.39 A3 = 30 May = 1 x 1 x 18 = 18 Mymax = 18 K = 1 = 1 2 = 0.39/18 = 0.022 M = W x 9.8 (Ln + An)/1000 Correction value of moment center position distance An: Table (3) Find the static moment M (Nm).
tuoe) 2 1/4 (1000. 2000 tvoe) 3/8 (2000 type) Without bracket I Flat bracket L-bracket World Wide QS\E Support...
L1 L2+A5 L3 2 1 W V 2 E= ( ) 2 9.8 1000 Collision speed V=1.4 Va *) Corrected coeficient 1 420 E= 1( ) =0.088 2 1000 V=1.4 X 300=420 Calculate kinetic energy E (J) of work. Calculate allwable kinetic energy Ea (J). Check that kinetic energy of work does not exceed allowable kinetic energy.
C J G5-S 150 cm3/min or less 200 cm3/min or less 300 cm3/min or less Supply pressure 0.1 MPa Total allowable leakage 800 cm3/min or less 1000 cm3/min or less 1200 cm3/min or less Weight/Standard Type: MQQT Supply pressure 0.3 MPa CV 1500 cm3/min or less 2000 cm3/min or less 3000 cm3/min or less Supply pressure 0.5 MPa (g) Note 1) Use clean, dry air with no freezing.
Standard stroke Maximum manufacturable stroke (mm) Standard stroke (mm) Bore size (mm) Suffix for stroke adjusting unit 25 32 40 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 2000 2000 2000 Nil S 2 pcs. 1 pc.
My = 0.5 x 9.8 (10 + 11)/1000 = 0.11 A3 = 11 May = 1 x 1 x 9.14 = 9.14 Mymax = 9.14 K = 1 = 1 2 = 0.11/9.14 = 0.012 Examine Mr.
L/min(PFMC7501) [ P_1] OUT1 [ 500] 500 L/min(PFMC7102) 29 [F 1] [ 1000] 1000 L/min(PFMC7202) [ 25] 25 L/min(PFMC7501) [ H_1] OUT1 [ 50] 50 L/min(PFMC7102) [ 100] 100 L/min(PFMC7202) [ CoL] OUT1 [SoG] ONOFF [ oU2] OUT2 2 [ HYS] [ 2ot] OUT2 2 [ 2_P] [ 250] 250 L/min(PFMC7501) [ P_2] OUT2 2 [ 500] 500 L/min(PFMC7102) 37 [F 2] [ 1000] 1000 L/min(PFMC7202) [ 25] 25 L/min(PFMC7501) [ H_2] OUT2