Note 3) 10 to 15 in decimal number are displayed as follows in the 7-segment LED. Decimal display Hexadecimal display 10 A 11 b 12 c 13 d 14 E 15 F Note 4) Applicable to non-magnetizing lock. 68 Series LECP1 Controller Details e r No.
Time [s] Method 2: Calculation T1 T2 T3 T4 T5 Cycle time T can be found from the following equation. T6 T = T1 + T2 + T3 + T4 [s] Calculation example) T1 to T4 can be calculated as follows. L : Stroke [mm] V : Speed [mm/s] a1: Acceleration [mm/s2] a2: Deceleration [mm/s2] T1 and T3 can be obtained by the following equation.
L Speed: V [mm/s] Cycle time T can be found from the following equation. a1 a2 T = T1 + T2 + T3 + T4 [s] T1: Acceleration time and T3: Deceleration time can be obtained by the following equation. Time [s] T1 = V/a1 [s] T3 = V/a2 [s] T1 T2 T3 T4 T2: Constant speed time can be found from the following equation.
Calculation example) T1 to T4 can be calculated as follows. L Speed: V [mm/s] a1 a2 T1 = V/a1 = 300/3000 = 0.1 [s], T3 = V/a2 = 300/3000 = 0.1 [s] Time T = T1 + T2 + T3 + T4 [s] [s] L 0.5 V (T1 + T3) V T1: Acceleration time and T3: Deceleration time can be found by the following equation.
Determine the mean suction flow: Q r = v x 6 o T1 9 9 0 . s : s : : P o o . g u o.z T 2 = 3 1 o 1 mean suction flow required from ejector (N/min), 0.1 0.2 0.3 0.5 0.7 1 2 3 | 5 7 10 20 30 50 70 100 O T1 i(sec) o1 adsorption response time to 63% to P, (sec), T1 adsorption response time to 95% of P" (sec), T2 1 l lncnnica System Specif ication (continued) 2.
Determine the mean suction flow: Q r = v x 6 o T1 9 9 0 . s : s : : P o o . g u o.z T 2 = 3 1 o 1 mean suction flow required from ejector (N/min), 0.1 0.2 0.3 0.5 0.7 1 2 3 | 5 7 10 20 30 50 70 100 O T1 i(sec) o1 adsorption response time to 63% to P, (sec), T1 adsorption response time to 95% of P" (sec), T2 1 l lncnnic System Specif ication (continued) 2.
Silent interval is indicated by T1-T2-T3-T4. Table 3.8.2 RTU mode message frame a)Start b)Slave Address c)Function d)Data e) Checksum (CRC) f)End T1-T2-T3-T4 XX XX XX XX XX XX T1-T2-T3-T4 a) Start In Modbus RTU mode, message frames are separated by a silent interval (non-communication time).
Port size M5 x 0.8 t 10.5 15 18 20 t 10.5 15 18 20 Series Assembly part no.
(Max. 20 stations) Note) Indicate "Nil" for types T, T1, and S.
Types with 15 pin are also available. For details, refer to page 2-4-68.
Applicable model Min. operating flow rate [L/min] HRL-BP002 HRLE050-m-m CH1: 15/15 (50/60 Hz) CH2: 1/1 (50/60 Hz) HRL-BP001 HRLE090-m-m CH1: 25/35 (50/60 Hz) CH2: 1/1 (50/60 Hz) CH1 Circulating fluid return port Applicable hose I.D.: 19: HRL-BP001 Applicable hose I.D.: 15: HRL-BP002 u q r t i !0 CH2 Circulating fluid return port Applicable hose I.D.: 15 o u !
[W] = 7.3 [kW] T = T2 T1 Cooling capacity = Considering a safety factor of 20%, 7.3 [kW] x 1.2 = 8.8 [kW] T1: Outlet temperature 23 Cooing Capacity Calculation Series HRS100/150 Required Cooling Capacity Calculation Example 3: When there is no heat generation, and when cooling the object below a certain temperature and period of time.
temperature 32C 25 25 Ambient temperature 43C Cooling capacity [kW] Cooling capacity [kW] 24 20 20 Facility water temperature 40C 15 15 Ambient temperature 45C 10 10 5 5 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 Circulating fluid temperature [C] Circulating fluid temperature [C] 170 Thermo-chiller Inverter Type HRSH Series If the product is used at altitude of 1000 m or higher, refer
= Considering a safety factor of 20%, 7.0 [kW] x 1.2 = 8.4 [kW] HED V 20C After 15 minutes, cool 32C down to 20C.
Q = qm x C x (T2 T1) x qv x C x iT 60 1 x 70 x 4.186 x 103 x 4.0 60 = = qm x C x (T2 T1) 860 Q = = 19535 [J/s] 19535 [W] = 19.5 [kW] x qv x 60 x C x iT 860 = Cooling capacity = Considering a safety factor of 20%, 19.5 [kW] x 1.2 = 23.4 [kW] 1 x 70 x 60 x 1.0 x 103 x 4.0 860 = Thermo-chiller T1: Outlet temperature Q: Heat generation amount 1680 [cal/h] 860 Users equipment = T = T2 T1
Q = qm x C x (T2 T1) x qv x C x iT 60 1 x 35 x 4.186 x 103 x 3.0 60 = = qm x C x (T2 T1) 860 Q = = 7325 [J/s] 7325 [W] = 7.3 [kW] x qv x 60 x C x iT 860 = Cooling capacity = Considering a safety factor of 20%, 7.3 [kW] x 1.2 = 8.8 [kW] 1 x 35 x 60 x 1.0 x 103 x 3.0 860 = Q: Heat generation amount T1: Outlet temperature Thermo-chiller Users equipment T = T2 T1 7325 [W] = 7.3 [kW] Cooling
Q = qm x C x (T2 T1) x qv x C x iT 60 1 x 35 x 4.186 x 103 x 3.0 60 = = qm x C x (T2 T1) 860 Q = = 7325 [J/s] 7325 [W] = 7.3 [kW] x qv x 60 x C x iT 860 = Cooling capacity = Considering a safety factor of 20%, 7.3 [kW] x 1.2 = 8.8 [kW] 1 x 35 x 60 x 1.0 x 103 x 3.0 860 = Q: Heat generation amount T1: Outlet temperature Thermo-chiller Users equipment 7325 [W] = 7.3 [kW] T = T2 T1 Cooling
Description RUN 15 +24V Common The positive common of the input terminal. 1, 14 HOLD 3 The terminal that performs setup operations (actuator starting preparation). 2 Starting preparation STOP 16 SET-UP ALARM RESET 4 The terminal that performs program start. RUN 15 Starting PRO-NO BIT 1 17 17 Pro-no. bit1 The terminal that designates the program to be executed.
bar absolute, T1 = 297 5K, 0.07 bar P 0.14 bar.
Q1 R1 R2 R3 S1 T1 Kalrez 4079 SS592 SS630 SSE38 1232-70 3310-75 Chemraz Example) XLH-16-XAN1A VMQ FKM for Plasma ULTIC ARMOR U1 UA4640 Produced by Mitsubishi Cable Industries, Ltd.