Light/Surge voltage suppressor Y Note) DIN terminal YO Note) DIN terminal (Without connector) IP Nil None Z With light/surge voltage suppressor S Note) With surge voltage suppressor Note) Conforming to DIN 43650, Form B IW Note) Available for grommet type only. 1301 Specications AW Symbol Single solenoid Fluid Air Valve type Normally closed IL1 (3) (A) 2 Max. operating pressure 0.9 MPa (130
25 to 85C (with no freezing and condensation)1000 VAC for 1 min. between external terminal and case50M or more (500 VDC Mega) between external terminal and case.10 to 500 Hz with a 1.5 mm amplitude or 98 m/s2 acceleration, in each X, Y, Z direction for 2 hrs, whichever is smaller. (de-energized)490 m/s2 in X, Y, Z directions 3 times each1000 Vp-p, Pulse width 1 ?s, Rise time 1 ns
25 to 85C (with no freezing and condensation)1000 VAC for 1 min. between external terminal and case50M or more (500 VDC Mega) between external terminal and case.10 to 500 Hz with a 1.5 mm amplitude or 98 m/s2 acceleration, in each X, Y, Z direction for 2 hrs, whichever is smaller. (de-energized)490 m/s2 in X, Y, Z directions 3 times each1000 Vp-p, Pulse width 1 ?s, Rise time 1 ns
25 to 85C (with no freezing and condensation)1000 VAC for 1 min. between external terminal and case50M or more (500 VDC Mega) between external terminal and case.10 to 500 Hz with a 1.5 mm amplitude or 98 m/s2 acceleration, in each X, Y, Z direction for 2 hrs, whichever is smaller. (de-energized)490 m/s2 in X, Y, Z directions 3 times each1000 Vp-p, Pulse width 1 ?s, Rise time 1 ns
25 to 85C (with no freezing and condensation)1000 VAC for 1 min. between external terminal and case50M or more (500 VDC Mega) between external terminal and case.10 to 500 Hz with a 1.5 mm amplitude or 98 m/s2 acceleration, in each X, Y, Z direction for 2 hrs, whichever is smaller. (de-energized)490 m/s2 in X, Y, Z directions 3 times each1000 Vp-p, Pulse width 1 ?s, Rise time 1 ns
25 to 85C (with no freezing and condensation)1000 VAC for 1 min. between external terminal and case50M or more (500 VDC Mega) between external terminal and case.10 to 500 Hz with a 1.5 mm amplitude or 98 m/s2 acceleration, in each X, Y, Z direction for 2 hrs, whichever is smaller. (de-energized)490 m/s2 in X, Y, Z directions 3 times each1000 Vp-p, Pulse width 1 ?s, Rise time 1 ns
25 to 85C (with no freezing and condensation)1000 VAC for 1 min. between external terminal and case50M or more (500 VDC Mega) between external terminal and case.10 to 500 Hz with a 1.5 mm amplitude or 98 m/s2 acceleration, in each X, Y, Z direction for 2 hrs, whichever is smaller. (de-energized)490 m/s2 in X, Y, Z directions 3 times each1000 Vp-p, Pulse width 1 ?s, Rise time 1 ns
25 to 85C (with no freezing and condensation)1000 VAC for 1 min. between external terminal and case50M or more (500 VDC Mega) between external terminal and case.10 to 500 Hz with a 1.5 mm amplitude or 98 m/s2 acceleration, in each X, Y, Z direction for 2 hrs, whichever is smaller. (de-energized)490 m/s2 in X, Y, Z directions 3 times each1000 Vp-p, Pulse width 1 ?s, Rise time 1 ns
25 to 85C (with no freezing and condensation)1000 VAC for 1 min. between external terminal and case50M or more (500 VDC Mega) between external terminal and case.10 to 500 Hz with a 1.5 mm amplitude or 98 m/s2 acceleration, in each X, Y, Z direction for 2 hrs, whichever is smaller. (de-energized)490 m/s2 in X, Y, Z directions 3 times each1000 Vp-p, Pulse width 1 ?s, Rise time 1 ns
25 to 85C (with no freezing and condensation)1000 VAC for 1 min. between external terminal and case50M or more (500 VDC Mega) between external terminal and case.10 to 500 Hz with a 1.5 mm amplitude or 98 m/s2 acceleration, in each X, Y, Z direction for 2 hrs, whichever is smaller. (de-energized)490 m/s2 in X, Y, Z directions 3 times each1000 Vp-p, Pulse width 1 ?s, Rise time 1 ns
25 to 85C (with no freezing and condensation)1000 VAC for 1 min. between external terminal and case50M or more (500 VDC Mega) between external terminal and case.10 to 500 Hz with a 1.5 mm amplitude or 98 m/s2 acceleration, in each X, Y, Z direction for 2 hrs, whichever is smaller. (de-energized)490 m/s2 in X, Y, Z directions 3 times each1000 Vp-p, Pulse width 1 ?s, Rise time 1 ns
25 to 85C (with no freezing and condensation)1000 VAC for 1 min. between external terminal and case50M or more (500 VDC Mega) between external terminal and case.10 to 500 Hz with a 1.5 mm amplitude or 98 m/s2 acceleration, in each X, Y, Z direction for 2 hrs, whichever is smaller. (de-energized)490 m/s2 in X, Y, Z directions 3 times each1000 Vp-p, Pulse width 1 ?s, Rise time 1 ns
25 to 85C (with no freezing and condensation)1000 VAC for 1 min. between external terminal and case50M or more (500 VDC Mega) between external terminal and case.10 to 500 Hz with a 1.5 mm amplitude or 98 m/s2 acceleration, in each X, Y, Z direction for 2 hrs, whichever is smaller. (de-energized)490 m/s2 in X, Y, Z directions 3 times each1000 Vp-p, Pulse width 1 ?s, Rise time 1 ns
25 to 85C (with no freezing and condensation)1000 VAC for 1 min. between external terminal and case50M or more (500 VDC Mega) between external terminal and case.10 to 500 Hz with a 1.5 mm amplitude or 98 m/s2 acceleration, in each X, Y, Z direction for 2 hrs, whichever is smaller. (de-energized)490 m/s2 in X, Y, Z directions 3 times each1000 Vp-p, Pulse width 1 ?s, Rise time 1 ns
25 to 85C (with no freezing and condensation)1000 VAC for 1 min. between external terminal and case50M or more (500 VDC Mega) between external terminal and case.10 to 500 Hz with a 1.5 mm amplitude or 98 m/s2 acceleration, in each X, Y, Z direction for 2 hrs, whichever is smaller. (de-energized)490 m/s2 in X, Y, Z directions 3 times each1000 Vp-p, Pulse width 1 ?s, Rise time 1 ns
25 to 85C (with no freezing and condensation)1000 VAC for 1 min. between external terminal and case50M or more (500 VDC Mega) between external terminal and case.10 to 500 Hz with a 1.5 mm amplitude or 98 m/s2 acceleration, in each X, Y, Z direction for 2 hrs, whichever is smaller. (de-energized)490 m/s2 in X, Y, Z directions 3 times each1000 Vp-p, Pulse width 1 ?s, Rise time 1 ns
25 to 85C (with no freezing and condensation)1000 VAC for 1 min. between external terminal and case50M or more (500 VDC Mega) between external terminal and case.10 to 500 Hz with a 1.5 mm amplitude or 98 m/s2 acceleration, in each X, Y, Z direction for 2 hrs, whichever is smaller. (de-energized)490 m/s2 in X, Y, Z directions 3 times each1000 Vp-p, Pulse width 1 ?s, Rise time 1 ns
25 to 85C (with no freezing and condensation)1000 VAC for 1 min. between external terminal and case50M or more (500 VDC Mega) between external terminal and case.10 to 500 Hz with a 1.5 mm amplitude or 98 m/s2 acceleration, in each X, Y, Z direction for 2 hrs, whichever is smaller. (de-energized)490 m/s2 in X, Y, Z directions 3 times each1000 Vp-p, Pulse width 1 ?s, Rise time 1 ns
25 to 85C (with no freezing and condensation)1000 VAC for 1 min. between external terminal and case50M or more (500 VDC Mega) between external terminal and case.10 to 500 Hz with a 1.5 mm amplitude or 98 m/s2 acceleration, in each X, Y, Z direction for 2 hrs, whichever is smaller. (de-energized)490 m/s2 in X, Y, Z directions 3 times each1000 Vp-p, Pulse width 1 ?s, Rise time 1 ns
25 to 85C (with no freezing and condensation)1000 VAC for 1 min. between external terminal and case50M or more (500 VDC Mega) between external terminal and case.10 to 500 Hz with a 1.5 mm amplitude or 98 m/s2 acceleration, in each X, Y, Z direction for 2 hrs, whichever is smaller. (de-energized)490 m/s2 in X, Y, Z directions 3 times each1000 Vp-p, Pulse width 1 ?s, Rise time 1 ns