H H H H G E G X E X Note ) E X RG RT RS B 600 740 C R310 R445 D 296 302 E 620 890 F 93 129 G 60 87 B 680 790 C R390 R495 D 296 302 E 780 990 F 93 129 G 60 87 B 640 740 C R350 R440 D 296 307 E 634 800 F 93 129 H 10 15 A 700 1000 A 700 880 A 700 880 15 32 15 32 15 32 I 6 7 X 740 1064 Y Note 2) I 6 7 X 660 816 Y Note 2) X 700 880 Y Note 2) H 10 15 H 10 15 I 6 7 15 32 15 32 15 32 558 to 573
Model K VCKL0604-02F H KFN-06-X2 K VCKL0806-02F H KFN-08-X2 K VCKL1075-02F H L Union nut C3604BD + Ni plated 1 1 set unit KFN-10-X2 K VCKL1008-02F H K VCKL1209-02F H KFN-12-X2 K VCKL-02F H K VCKL0604-02F H KFS-06 K VCKL0806-02F H KFS-08 K VCKL1075-02F H M Sleeve Nylon 1 1 set unit KFS-10 K VCKL1008-02F H VNA VNB K VCKL1209-02F H KFS-12 SGC SGH N Gasket VCKK-4-1 Nylon 1 10 set unit VNC VNH
min] Circulating fluid specific heat C : 1.0 x 103 [cal/(kgfC)] Circulating fluid outlet temperature T1 : 20 [C] Circulating fluid return temperature T2 : 23 [C] Circulating fluid temperature difference iT : 3 [C] (= T2 T1) Conversion factor: hours to minutes : 60 [min/h] Conversion factor: kcal/h to kW : 860 [(cal/h)/W] * Refer to page 150 for the typical physical property value of tap
10 100 F W X10 Guide type High rigidity direct acting guide H X10 Non-standard motor Series Series 10 Series 20 Series 30 Limit switch 10 20 30 None B contact specification 2 pcs.
min] Circulating fluid specific heat C : 1.0 x 103 [cal/(kgfC)] Circulating fluid outlet temperature T1 : 20 [C] Circulating fluid return temperature T2 : 23 [C] Circulating fluid temperature difference iT : 3 [C] (= T2 T1) Conversion factor: hours to minutes : 60 [min/h] Conversion factor: kcal/h to kW : 860 [(cal/h)/W] * Refer to page 87 for the typical physical property value of tap water
min] Circulating fluid specific heat C : 1.0 x 103 [cal/(kgfC)] Circulating fluid outlet temperature T1 : 20 [C] Circulating fluid return temperature T2 : 23 [C] Circulating fluid temperature difference iT : 3 [C] (= T2 T1) Conversion factor: hours to minutes : 60 [min/h] Conversion factor: kcal/h to kW : 860 [(cal/h)/W] * Refer to page 119 for the typical physical property value of tap
MDHR3-15 MDHR3-10 H L H When auto switch D-M9V is used When auto switch D-M9 is used When auto switch D-M9V is used Max. Protrusion of Auto Switch from Edge of Body: L, H Max. Protrusion of Auto Switch from Edge of Body: H (mm) (mm) D-M9V D-M9V D-M9N Auto switch model Auto switch model L H 1.3 The auto switch will not protrude in the case of D-F9. H 2.3 12-5-26
ON YES Hysteresis mode OFF P-1 P-2 Real-time flow rate "P" H H ON Window comparator mode H: Hysteresis NO OFF P-1 P-2 Real-time flow rate OUT1 Output mode ON YES Hysteresis mode OFF n-1 n-2 Real-time flow rate "n" H H ON Window comparator mode H: Hysteresis OFF NO n-2 n-1 Real-time flow rate Accumulated pulse output ( ) Accumulated switch output ( ) Refer to "Flow Rate Setting Mode
Slroke = 079 (20mrt) w h Boot Mr limelers i. Parenlneses CPA1 BN do Boot with Boot' BORE D E G'GB J K M MM N P H z.
ISA3-H Piping length: 1m, 3m, 5m : When the display value becomes 29 or lower, "0" is displayed. "0" and "30" are displayed near "30".
Slroke = 079 (20mrt) w h Boot Mr limelers i. Parenlneses CPA1 BN do Boot with Boot' BORE D E G'GB J K M MM N P H z.
From the intersection G, trace the arrow mark to obtain the intersection H on the vertical axis. The intersection H is the amount of water included in the compressed air 1 m3 at 0.7 MPa, pressure dew point of 25C. The amount of water is 3.0 g/m3. Therefore, the amount of condensed water is as following.
MK(2) Resistance RS Q G Adjustment dial RS H A RZQ Adjustment dial rotation angle MI W S 90 CEP1 Stopper direction can be changed within 90 CE1 CE2 The stopper lever can be rotated 90.
RE A B 0.2 53 REC 67 CX CY MQQ M RHC 4-6.6 through 8-11 depth of recessed area 5 Load carrying direction MK(2) 12 3 RS Q G 28 13 6 10.3 6 RS H A RZQ 12 Conveyor lower limit position MI W S 1 3 R25 CEP1 CE1 Stroke 73 87 CE2 2-P 20 ML2B C J G5-S 16 8 160 CV MVGQ Rear pressure port 16 CC Front pressure port RB J D-X 6.5 23 14 2-Plug 46 2051.5 (Width across corners 62) Data P (Piping port) TN
X Tank capacity 1000 Relief time that is read t = 2000 1000 = X 23 = 46 The result is 46S. From the above, the relief time is 263=23S 5.1-5 VEX1 Construction/Operation Principles/Component Parts [1] When A port pressure is high. [3] When A port pressure is low.
No.0.8 L1 L3 L2 L3 (L4) No.0.8 H 2 H 2 H 2 L1 M1 M1 M1 D Pad side Pad side Pad side ZP2V-A01ZP2V-AN1ZP2V-AG1ZP2V-A5ZP2V-A8Vacuum generator side D Vacuum generator side M2 M2 L3 L2 H 1 Vacuum generator side L2 L3 3 H 1 M2 H 1 (L4) (L4) No.0.8 No.0.8 (L4) No.0.8 H 2 H 2 L1 L1 L1 H 2 M1 M1 M1 Pad side Pad side Pad side ZP2V-B01ZP2V-BN1ZP2V-BG1ZP2V-B5ZP2V-B61 The place at the vacuum generator
H L L O O S S U U C C P P K K 8 U 57 (at knob locked) DIN rail part no.
.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com VX3 Sensor (Breathing port) R VXA 2-Q VN PB LVC G H PA C LVA SMC A B LVH N E LVD J B LVQ (F) LQ LVN TI/ TIL PA (mm) Dimensions PAX A B C D E F G H J K L M M5 x 0.8 R N Q Model LVC2 LVC3 LVC4 LVC5 LVC6 30 30 54.5 44 11 79 28.5 13 4 20 37 3.5 23.5 M3 x
B H Material: SUS304 Material: SUS304 Material: SUS304 Part no.