L Calculation example) T1 to T4 can be calculated as follows. Speed: V [mm/s] a1 a2 T1 = V/a1 = 300/3000 = 0.1 [s], Time [s] T3 = V/a2 = 300/3000 = 0.1 [s] T = T1 + T2 + T3 + T4 [s] L 0.5 V (T1 + T3) V T1 T2 T3 T4 T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.
Calculation example) T1 to T4 can be calculated as follows. L Speed: V [mm/s] a1 a2 T1 = V/a1 = 300/3000 = 0.1 [s], T3 = V/a2 = 300/3000 = 0.1 [s] Time [s] T = T1 +T2 +T3 +T4 [s] L 0.5 V (T1 + T3) V "T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.
Temperature N1 P1 Q1 R1 R2 R3 S1 T1 U1 Main valve: Indicator/ Pilot port direction Symbol Nil Without indicator Kalrez Number of auto switches/Mounting position Symbol Nil Without auto switch 2 pcs. 1 pc. 1 pc.
Q1 R1 R2 R3 S1 T1 Kalrez 4079 SS592 SS630 SSE38 1232-70 3310-75 Chemraz Example) XLH-16-XAN1A VMQ FKM for Plasma ULTIC ARMOR U1 UA4640 Produced by Mitsubishi Cable Industries, Ltd.
Option symbol T1 Inverter Pump Mounted HRR010 20 T1 Inverter pump mounted Possible to choose an inverter pump in accordance with users piping resistance Cooling capacity will decrease by heat generated in the pump. The inverter pump does not use a mechanical seal. The 50 Hz and the 60 Hz inverter pumps have the same capacity.
L Speed: V [mm/s] a1 a2 T = T1 + T2 + T3 + T4 [s] P T1: Acceleration time and T3: Deceleration time can be obtained by the following equation. Time [s] T1 T2 T3 T4 T1 = V/a1 [s] T3 = V/a2 [s] P T2: Constant speed time can be found from the following equation.
-A3 ZP3A-T1-B3 ZP3A-T1-A6-B3 ZP3A-T3-A5 ZP3A-T3-B5 Note 1) ; in the table indicates the pad material.
Lead 5: LES16K 3 Work load [kg] T1 = V/a1 = 220/5000 = 0.04 [s], Lead 10: LES16J 2 T3 = V/a2 = 220/5000 = 0.04 [s] T = T1 + T2 + T3 + T4 [s] T2 = L 0.5 V (T1 + T3) V T1: Acceleration time and T3: Deceleration time can be obtained by the following equation. 1 0 = 50 0.5 220 (0.04 + 0.04) 220 0 100 200 300 400 500 T1 = V/a1 [s] T3 = V/a2 [s] Speed [mm/s] = 0.19 [s]
-A3 ZP3A-T1-B3 ZP3A-T1-A6-B3 ZP3A-T3-A5 ZP3A-T3-B5 Note 1) ; in the table indicates the pad material.
-A3 ZP3A-T1-B3 ZP3A-T1-A6-B3 ZP3A-T3-A5 ZP3A-T3-B5 Note 1) ; in the table indicates the pad material.
-A3 ZP3A-T1-B3 ZP3A-T1-A6-B3 ZP3A-T3-A5 ZP3A-T3-B5 Note 1) ; in the table indicates the pad material.
Speed:V [mm/s] a1 a2 Reaches the target position T = T1 + T2 + T3 + T4 [s] P T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.
Note 2) Splash proof specification is not available for F and T1.
Time [s] LEC SS-T T1 T2 T3 T4 T1 = V/a1 [s] T3 = V/a2 [s] LEC Y T2: Constant speed time can be found from the following equation.
(For F, L, S, T & T1 kits) D-Side End Plate Assembly 2. U-side end plate assembly part no.
Calculation example) T1 to T4 can be calculated as follows. L Speed: V [mm/s] a1 a2 T1 = V/a1 = 300/10 = 0.03 [s], T3 = V/a2 = 300/10 = 0.03 [s] Time T = T1 + T2 + T3 + T4 [s] [s] L 0.5 V (T1 + T3) V T1: Acceleration time and T3: Deceleration time can be found by the following equation.
Calculation example) T1 to T4 can be calculated as follows. L Speed: V [mm/s] a1 a2 T1 = V/a1 = 300/3000 = 0.1 [s], T3 = V/a2 = 300/3000 = 0.1 [s] Time [s] T = T1 + T2 + T3 + T4 [s] L 0.5 V (T1 + T3) V T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.
,T2Inverter pump 6.3.1 Option T1, T2Inverter pump With option T1 or T2, the pump output set value can be changed.
Average suction flow rate V x 60 T1 V x 60 T1 Q = Q = + QL T2 = 3 x T1 T2 = 3 x T1 Q : Average suction flow rate /min (ANR) V : Piping capacity () T1 : Arrival time to stable Pv 63% after adsorption (sec.) T2 : Arrival time to stable Pv 95% after adsorption (sec.) QL : Leakage at work adsorption /min (ANR) 2.
Average suction flow rate V x 60 T1 V x 60 T1 Q = Q = + QL T2 = 3 x T1 T2 = 3 x T1 Q : Average suction flow rate /min (ANR) V : Piping capacity () T1 : Arrival time to stable Pv 63% after adsorption (sec.) T2 : Arrival time to stable Pv 95% after adsorption (sec.) QL : Leakage at work adsorption /min (ANR) 2.