SMC Corporation of America
Elite Part Number Search
Search Results "HRS090-WN-46"

When using a maximum of 7 point tables, wiring and input signal allocation of the DI2 must be implemented. 46 - (1) Example of Allocation of a Maximum of 7 Points in current SINK (NPN) Interface Changing pin CN1-7 from Reverse rotation start (ST2) to point table no.

oN Opd.tion: 360 it60 131) 130 360 360 130 150 150 r5n 150 1 1 0 150 150 i $'q (46.C) (4.5) 0,177 t'r.5) (10) 0.39,1 ool (5) (5) .) 0346 19.81 0.543 03.31 03.q M6di4 air {lub.i*td d 0ll.16}, .nd non.flflm.blo mn.torlci non{orcs!.

MB Clevis Pin/Knuckle Pin MB1 Material: Carbon steel (mm) CA2 Applicable bore size (mm) d drill through Applicable cotter pin Applicable flat washer Dd9 L m Part no. l x Clevis Knuckle CS1 CDP-2A 40 10 -0.040 -0.076 46 4 Polished round 10 38 3 3 x 18l CS2 CDP-3A 50 40, 50, 63 12 -0.050 -0.093 55.5 4 Polished round 12 47.5 3 3 x 18l CDP-4A 63 16 -0.050 -0.093 71 5 Polished round 16 61

M1 M2 M3 m1 m2 m3 16 25 40 16 25 40 16 25 40 5 4 3.5 18 16 14 MY2H 13 14 10 35 35 30 45 33 28 68 66 57 7 6 7 15 13 13 MY2H 28 26 26 32 30 30 60 50 60 62 62 62 46 55 46 20 18 18 MY2HT 100 120 100 38 35 35 200 220 200 80 80 80 The above values are the maximum allowable values for moment and load.

M1 M2 M3 m1 m2 m3 E-MY2C 16 25 16 25 16 25 5 18 16 14 4 3.5 13 35 35 30 14 10 LJ1 LJ1 7 15 13 13 6 7 E-MY2H 28 32 30 30 26 26 LG1 LG1 46 20 18 18 55 46 E-MY2HT 100 38 35 35 120 100 Maximum Load Mass LTF LTF The above values are the maximum allowable values for moment and load mass.

M2 M3 m1 m2 m3 16 25 40 16 25 40 7 6 7 15 13 13 MY2H 28 26 26 32 30 30 60 50 60 62 62 62 46 55 46 20 18 18 100 120 100 38 35 35 MY2HT 200 220 200 80 80 80 The above values are the maximum allowable values for moment and load. Refer to each graph regarding the maximum allowable moment and maximum allowable load for a particular piston speed.

M1 M2 M3 m1 m2 m3 16 25 40 16 25 40 16 25 40 5 4 3.5 18 16 14 MY2H 13 14 10 35 35 30 45 33 28 68 66 57 7 6 7 15 13 13 MY2H 28 26 26 32 30 30 60 50 60 62 62 62 46 55 46 20 18 18 MY2HT 100 120 100 38 35 35 200 220 200 80 80 80 The above values are the maximum allowable values for moment and load.

Cooling Method: A (Air-cooled Refrigeration), Pipe Thread: Rc, Power Supply: 46 [3-phase 380 to 415 VAC (50/60 Hz); 3-phase 460 to 480 VAC (60 Hz)]

Cooling Method: A (Air-cooled Refrigeration), Pipe Thread: N [NPT (w/Rc-NPT Conversion Fitting)], Power Supply: 46 [3-phase 380 to 415 VAC (50/60 Hz); 3-phase 460 to 480 VAC (60 Hz)]

Cooling Method: A (Air-cooled Refrigeration), Pipe Thread: F [G (w/Rc-G Conversion Fitting)], Power Supply: 46 [3-phase 380 to 415 VAC (50/60 Hz); 3-phase 460 to 480 VAC (60 Hz)]

Cooling Method: W (Water-cooled Refrigeration), Pipe Thread: F [G (w/Rc-G Conversion Fitting)], Power Supply: 46 [3-phase 380 to 415 VAC (50/60 Hz); 3-phase 460 to 480 VAC (60 Hz)]

Cooling Method: W (Water-cooled Refrigeration), Pipe Thread: Rc, Power Supply: 46 [3-phase 380 to 415 VAC (50/60 Hz); 3-phase 460 to 480 VAC (60 Hz)]

Cooling Method: Air-cooled Refrigeration, Pipe Thread: Rc, Power Supply: 46 [3-phase 380 to 415 VAC (50/60 Hz); 3-phase 460 to 480 VAC (60 Hz)], Option: -

Cooling Method: Air-cooled Refrigeration, Pipe Thread: N [NPT (w/Rc-NPT Conversion Fitting)], Power Supply: 46 [3-phase 380 to 415 VAC (50/60 Hz); 3-phase 460 to 480 VAC (60 Hz)], Option: -

Cooling Method: Air-cooled Refrigeration, Pipe Thread: F [G (w/Rc-G Conversion Fitting)], Power Supply: 46 [3-phase 380 to 415 VAC (50/60 Hz); 3-phase 460 to 480 VAC (60 Hz)], Option: -

Cooling Method: Water-cooled Refrigeration, Pipe Thread: F [G (w/Rc-G Conversion Fitting)], Power Supply: 46 [3-phase 380 to 415 VAC (50/60 Hz); 3-phase 460 to 480 VAC (60 Hz)], Option: -

Load Blocking Mass and Center of Gravity for Each Workpiece 5 42.5 65 150 Center of gravity Mass mn Workpiece Wn Y-axis Yn X-axis Xn Z-axis Zn Z X Wa 0 mm 5 mm 0.88 kg 65 mm 111 210 Wb 0 mm 42.5 mm 4.35 kg 150 mm Y Y Wc 111 mm 42.5 mm 0.795 kg 150 mm Wd 210 mm 42.5 mm 0.5 kg 150 mm n = a, b, c, d 3.

Wn Y Y-axis Yn X-axis Xn Z-axis Zn X Wa 65 mm 0 mm 5 mm 0.88 kg 210 65 150 111 Z Wb 150 mm 0 mm 42.5 mm 4.35 kg Wc 150 mm 111 mm 42.5 mm 0.795 kg Wd 150 mm 210 mm 42.5 mm 0.5 kg Y 42.5 5 n = a, b, c, d 3.

Wn Y X-axis Xn Y-axis Yn Z-axis Zn X Wa 5 mm 0 mm 65 mm 0.88 kg 210 65 150 111 Z Wb 42.5 mm 0 mm 150 mm 4.35 kg Wc 42.5 mm 111 mm 150 mm 0.795 kg Wd 42.5 mm 210 mm 150 mm 0. 5kg Y 42.5 5 n = a, b, c, d 3 Composite Center of Gravity Calculation m1 = mn = 0.88 + 4.35 + 0.795 + 0.5 = 6.525 kg 1 m1 X = x (mn x xn) 1 6.525 = (0.88 x 65 + 4.35 x 150 + 0.795 x 150 + 0.5 x 150) = 138.5 mm 1 m1 Y

Wn Y Y-axis Yn Z-axis Zn X-axis Xn X Wa 65 mm 0 mm 5 mm 0.88 kg 210 65 150 111 Z Wb 150 mm 0 mm 42.5 mm 4.35 kg Wc 150 mm 111 mm 42.5 mm 0.795 kg Wd 150 mm 210 mm 42.5 mm 0.5 kg Y 42.5 5 n = a, b, c, d 3.