-6 = 9.0 x 10-6 (kgm2) Moment of inertia around Z axis IA = IZ1 + m1r12 X 10-6 z r2 Z2 B part r2 = 47(mm) Calculation of weight m2 = d x e x f x Specific gravity m2 = 5 x 10 x 12 x 2.7 x 10-6 = 0.002 (kg) Moment of inertia around Z2 axis IZ2 = {m2 (d2 + e2)/12} x 10-6 IZ2 = {0.002 x (52 + 102)/12} x 10-6 = 0.02 x 10-6 (kgm2) IB = 0.02 x 10-6 + 0.002 x 472 x 10-6 = 4.4 x 10-6 (kgm2) I =
-6 = 9.0 x 10-6 (kgm2) Moment of inertia around Z axis IA = IZ1 + m1r12 X 10-6 z r2 Z2 B part r2 = 47(mm) Calculation of weight m2 = d x e x f x Specific gravity m2 = 5 x 10 x 12 x 2.7 x 10-6 = 0.002 (kg) Moment of inertia around Z2 axis IZ2 = {m2 (d2 + e2)/12} x 10-6 IZ2 = {0.002 x (52 + 102)/12} x 10-6 = 0.02 x 10-6 (kgm2) IB = 0.02 x 10-6 + 0.002 x 472 x 10-6 = 4.4 x 10-6 (kgm2) I =
-12-8 P . 10-12-30 P . 10-12-18 P . 10-12-27 10-12-1 2 Achieve rationalization of production lines with position feedback Stroke reading cylinder Measurement is possible throughout the full stroke range.
-12-8 P . 10-12-30 P . 10-12-18 P . 10-12-27 10-12-1 2 Achieve rationalization of production lines with position feedback Stroke reading cylinder Measurement is possible throughout the full stroke range.
-12-8 P . 10-12-30 P . 10-12-18 P . 10-12-27 10-12-1 Achieve rationalization Stroke reading cylinder Measurement is possible throughout the full stroke range.
A part z1 m1 = 20 x 3 x 4 x 2.7 x 10-6 = 6.48 x 10-4 (kg) Mass calculation m1 = a x b x c x Relative density Z1 Inertial moment around Z1 axis Z1 = {m1 (a2 + b2) / 12} x 10-6 = {6.48 x 10-4 x (202 + 32)/12} x 10-6 = 2.21 x 10-8 (kg.m2) = 2.21 x 10-8 + 6.48 x 10-4 x 16.42 x 10-6 = 0.20 x 10-6 (kg.m2) A Inertial moment around Z axis A = Z1 + m1r12 x 10-6 z f2 z2 B part r2 = 23.5(mm) Mass
A part z1 m1 = 20 x 3 x 4 x 2.7 x 10-6 = 6.48 x 10-4 (kg) Weight calculation m1 = a x b x c x Relative density IZ1 Inertial moment around Z1 axis IZ1 = {m1 (a2 + b2) / 12} x 10-6 = {6.48 x 10-4 x (202 + 32)/12} x 10-6 = 2.21 x 10-8 (kg.m2) = 2.21 x 10-8 + 6.48 x 10-4 x 16.42 x 10-6 = 0.20 x 10-6 (kg.m2) IA Inertial moment around Z axis IA =IZ1 + m1r12 x 10-6 z f2 z2 B part r2 = 23.5(mm)
A part z1 m1 = 20 x 3 x 4 x 2.7 x 10-6 = 6.48 x 10-4 (kg) Weight calculation m1 = a x b x c x Relative density IZ1 Inertial moment around Z1 axis IZ1 = {m1 (a2 + b2) / 12} x 10-6 = {6.48 x 10-4 x (202 + 32)/12} x 10-6 = 2.21 x 10-8 (kg.m2) = 2.21 x 10-8 + 6.48 x 10-4 x 16.42 x 10-6 = 0.20 x 10-6 (kg.m2) IA Inertial moment around Z axis IA =IZ1 + m1r12 x 10-6 z f2 z2 B part r2 = 23.5(mm)
MI-A0801-10 MI-A0801-20 MI-A1201-10 MI-A1201-20 MI-A1201-30 MI-A2001-10 MI-A2001-20 MI-A2001-30 MI-A2501-30 MI-A2501-50 MI-A3201-30 MI-A3201-50 MI-A0802-10 MI-A0802-20 MI-A1202-10 MI-A1202-20 MI-A1202-30 MI-A2002-10 MI-A2002-20 MI-A2002-30 MI-A2502-30 MI-A2502-50 MI-A3202-30 MI-A3202-50 MI-A0803-10 MI-A0803-20 MI-A1203-10 MI-A1203-20 MI-A1203-30 MI-A2003-10 MI-A2003-20 MI-A2003-30 MI-A2503
MI-A0801-10 MI-A0801-20 MI-A1201-10 MI-A1201-20 MI-A1201-30 MI-A2001-10 MI-A2001-20 MI-A2001-30 MI-A2501-30 MI-A2501-50 MI-A3201-30 MI-A3201-50 MI-A0802-10 MI-A0802-20 MI-A1202-10 MI-A1202-20 MI-A1202-30 MI-A2002-10 MI-A2002-20 MI-A2002-30 MI-A2502-30 MI-A2502-50 MI-A3202-30 MI-A3202-50 MI-A0803-10 MI-A0803-20 MI-A1203-10 MI-A1203-20 MI-A1203-30 MI-A2003-10 MI-A2003-20 MI-A2003-30 MI-A2503
Internal Grip External Grip MHKL2-12S MHKL2-12C 20 15 Gripping force (N) Gripping force (N) Pressure 0.6 MPa Pressure 0.6 MPa Pressure 0.6 MPa 15 Pressure 0.6 MPa MHZ 10 0.5 MPa 0.5 MPa 10 MHF 0.4 MPa 0.4 MPa 5 5 MHL 0.3 MPa 0.3 MPa F F 0 0 MHR 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 Note) In case of single acting type, the value is for stroke center.
10 MHW 0.3 MPa 0 0 MRHQ 10 20 30 40 50 10 20 30 40 50 60 60 Gripping point L (mm) Gripping point L (mm) Misc.
Minimum Auto Switch Mounting Stroke (mm) Auto switch model Bore size (mm) D-A9 A9V D-M9 D-M9V D-F9W D-F9WV D-F9BAL Number of auto switches 2 pcs. 10 5 15 10 20 10 15 20 1 pc. 5 5 15 5 20 10 15 2 pcs. 10 5 10 10 20 10 10 25,32,40,50 1 pc. 5 5 10 5 20 10 10 2 pcs. 10 5 10 10 15 10 10 63 1 pc. 5 5 10 5 15 5 5 Besides the models listed in How to Order, the following auto switches are applicable
Bore size/Stroke (mm) 6 10, 20, 30, 40, 50 8 10, 20, 30, 40, 50, 75 12 10, 20, 30, 40, 50, 75, 100 16 10, 20, 30, 40, 50, 75, 100, 125 20 10, 20, 30, 40, 50, 75, 100, 125, 150 25 10, 20, 30, 40, 50, 75, 100, 125, 150 Adjuster option Nil Without adjuster Functional option AS Extension end adjuster AT Retraction end adjuster Nil Standard A Both ends adjuster P Note) Axial piping CS Extension
(mm) 02 04 06 08 10 13 16 20 25 32 40 50 2 4 6 8 10 13 16 20 25 32 40 50 Pad type 02 04 06 08 10 13 16 20 25 32 40 50 2 4 6 8 10 13 16 20 25 32 40 50 Pressure gauge position Thread dia.
-15 -20 -30 -10 -15 -10 -15 -20 -30 -10 -15 -10 -15 -20 -30 -10 -15 1 9h9 M3 x 0.5 0.88 6 M3 x 0.5 0.88 6 3 6 M3 x 0.5 0.88 6 3 6 12h9 2 2 2 MHK 1.5 M4 x 0.7 2.1 8 M4 x 0.7 2.1 8 4 8 M4 x 0.7 2.1 8 4 8 14h9 M5 x 0.8 4.3 10 2 M5 x 0.8 4.3 10 5 10 M5 x 0.8 4.3 10 5 10 16h9 MHS 1 9h9 3 3 3 1.5 6 M3 x 0.5 0.88 M3 x 0.5 0.88 6 6 M3 x 0.5 0.88 6 6 3 3 12h9 MHC How to Locate Finger and Attachment
(Roll moment) Moment MXW25 120 70 (Static moment/Dynamic moment) Allowable Moment MXW25 70 100 50 (Nm) 30 40 Maximum moment (Nm) Maximum moment (Nm) 50 MXW20 25 30 40 Roll moment Pitch moment Yaw moment MXW20 20 Model Mr Mp/Mep My/Mey 15 MXW16 20 MXW16 12 10 15 3 5 5 MXW8 7 10 MXW12 MXW12 2 10 10 MXW12 4 5 7 5 4 3 12 20 20 MXW16 MXW8 MXW8 3 2.5 25 40 40 MXW20 2 2 1.5 50 100 200 300 500 65
mg F = x 4 2 x 0.1 = 10 x mg = 20 x mg 10 x workpiece weight 20 x workpiece weight (Note) Even in cases where the coefficient of friction is greater than = 0.2, for safety reasons, SMC recommends selecting a gripping force which is at least 10 to 20 times the workpiece weight.
mg F = x 4 2 x 0.1 = 10 x mg = 20 x mg 10 x workpiece weight 20 x workpiece weight (Note) Even in cases where the coefficient of friction is greater than = 0.2, for safety reasons, SMC recommends selecting a gripping force which is at least 10 to 20 times the workpiece weight.