(Error number 5) 4 points preset input type Brown Blue S1 White Vs Black S2 Vs: Power supply 24 VDC (Negative common) One of the preset pressures P1 through P4 is selected by the ON/OFF combination of S1 and S2. S1 OFF ON OFF ON S2 OFF OFF ON ON Preset pressure P01 P02 P03 P04 For safety reasons, it is recommended that one of the preset pressures be set to 0 MPa.
Impact acceleration [m/s2] 5 0 50 100 150 200 250 300 Speed [mm/s] Relationship between speed and impact acceleration 120 in vacuum environments (1.3 x 104 Pa) low leakage, and low outgassing.
itch (STO sw itch) S2: Start sw itch (STO release sw itch) S3: On sw itch S4: Off sw itch KM1: Magnetic contactor K3: Safety relay EMG: Emergency stop sw itch CN3 EM1 or EM2 M Servo motor Note.
(STO switch) S2: Start switch (STO release switch) S3: On switch S4: Off switch KM1: Magnetic contactor K3: Safety relay EMG: Emergency stop switch CN3 EM1 or EM2 M Servo motor Note.
Temperature abnormality On 16 Series E-MY2 Auto Switch Specifications Auto Switch Common Specifications Reed switch Solid state switch Type Leakage current 3-wire: 100 A or less 2-wire: 0.8 mA or less None Operating time 1.2 ms 1 ms or less 300 m/s2 1000 m/s2 Impact resistance 50 M or more at 500 VDC Mega (between lead wire and case) Insulation resistance Withstand voltage 1000 VAC for 1
Mount the switch in a location where there is no vibration greater than 98 m/s2, or no impact greater than 490 m/s2. 3. Do not use in an area where surges are generated.
Do not drop, bump, or apply excessive impacts (300 m/s2 or more for reed switches and 1000 m/s2 or more for solid state switches) while handling. Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction. 2. Do not carry a cylinder by the auto switch lead wires. Never carry a cylinder by its lead wires.
The operating time for D-J51 is 2 ms or less and for D-P3DW/P4DW are 40 ms or less. 4) 980 m/s2 for the trimmer type sensor section, 98 m/s2 for the amplifier section.
Movement Load : Angular acceleration F: Pressing force (N) T f = F x l (Nm) . 2 = (rad/s 2) Load Static torque calculation t 2 g = 9.8 m/s2 Ts = F x l (Nm) l : Rotation angle (rad) Lever t : Rotation time (S) Axis Rotary actuator Axis Allowable Load Application of the load on the axial direction is tolerated if no dynamic load is generated and the values are within what is shown in the
Do not drop, bump or apply excessive impacts (300m/s2 or more for reed switches and 1000m/s2 or more for solid state switches) while handling. Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction.
Static torque calculation Tf = F x L (Nm) Load . g = 9.8m/s2 F: Pressing force (N) : Angular acceleration Load .
Do not drop, bump, or apply excessive impacts (300 m/s2 or more for reed switches and 1000 m/s2 or more for solid state switches) while handling. Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction. 2. Do not carry a cylinder by the auto switch lead wires. Never carry a cylinder by its lead wires.
Movement Load : Angular acceleration F: Pressing force (N) T f = F x l (Nm) . 2 = (rad/s 2) Load Static torque calculation t 2 g = 9.8 m/s2 Ts = F x l (Nm) l : Rotation angle (rad) Lever t : Rotation time (S) Axis Rotary actuator Axis Allowable Load Application of the load on the axial direction is tolerated if no dynamic load is generated and the values are within what is shown in the
Movement Load : Angular acceleration F: Pressing force (N) T f = F x l (Nm) . 2 = (rad/s 2) Load Static torque calculation t 2 g = 9.8 m/s2 Ts = F x l (Nm) l : Rotation angle (rad) Lever t : Rotation time (S) Axis Rotary actuator Axis Allowable Load Application of the load on the axial direction is tolerated if no dynamic load is generated and the values are within what is shown in the
Do not drop, bump, or apply excessive impacts (300 m/s2 or more for reed switches and 1000 m/s2 or more for solid state switches) while handling. Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction. 2. Do not carry a cylinder by the auto switch lead wires. Never carry a cylinder by its lead wires.
Do not drop, bump, or apply excessive impacts (300 m/s2 or more for reed switches and 1000 m/s2 or more for solid state switches) while handling. Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction. 2. Do not carry a cylinder by the auto switch lead wires. Never carry a cylinder by its lead wires.
Do not drop, bump, or apply excessive impacts (300 m/s2 or more for reed switches and 1000 m/s2 or more for solid state switches) while handling. Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction. 2. Do not carry a cylinder by the auto switch lead wires. Never carry a cylinder by its lead wires.
Do not drop, bump, or apply excessive impacts (300 m/s2 or more for reed switches and 1000 m/s2 or more for solid state switches) while handling. Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction. 2. Do not carry a cylinder by the auto switch lead wires. Never carry a cylinder by its lead wires.
Do not drop, bump, or apply excessive impacts (300 m/s2 or more for reed switches and 1000 m/s2 or more for solid state switches) while handling. Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction. 2. Do not carry a cylinder by the auto switch lead wires. Never carry a cylinder by its lead wires.
Do not drop, bump, or apply excessive impacts (300 m/s2 or more for reed switches and 1000 m/s2 or more for solid state switches) while handling. Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction. 2. Do not carry a cylinder by the auto switch lead wires. Never carry a cylinder by its lead wires.