Address Description of bytes tion unit range Input Mode D0410 4 Target position [m] Note 1) 1 Note 1) No D0412 2 Positioning time [0.01s] 1 0 to 6000 No D0413 2 Speed [mm/s] 1 0 to 400 No D0414 2 Acceleration [mm/s2] 1 0 to 60 No D0415 2 Deceleration [mm/s2] 1 0 to 60 No 1 to 20, Pushing speed [mm/s] D0416 2 1 No 32768 to Note2) 32788 Thrust setting value Note 3) More than D0417 2 1 Yes [
External terminals (including the FE terminal) and enclosure screws Insulation resistance 10 M or more 500 VDC External terminals (including the FE terminal) and enclosure screws EN61131-2 compliant 5f<8.4 Hz 3.5 mm Vibration resistance 8.4f<150 Hz 9.8 m/s2 Impact resistance EN61131-2 compliant, 147 m/s2, 11 ms Mounting Through hole for M4 screw (2 pcs.)
without control unit and bracket mounted, Others 30 m/s2, whichever is smaller for 2 hours in X, Y, Z direction each (De-energized) Vibration resistance Without control unit and bracket mounted: 980 m/s2, Others: 150 m/s2 in X, Y and Z direction, 3 times each (De-energized) Nil: Rc 1/8, N type: NPT 1/8, F type: G 1/8 4-core, oil resistant, cable (0.64 mm2) with M12, 4-pin pre-wired connector
The operating time for D-J51 is 2 ms or less and for D-P3DW/P4DW are 40 ms or less. 4) 980 m/s2 for the trimmer type sensor section, 98 m/s2 for the amplifier section.
Movement Load : Angular acceleration F: Pressing force (N) T f = F x l (Nm) . 2 = (rad/s 2) Load Static torque calculation t 2 g = 9.8 m/s2 Ts = F x l (Nm) l : Rotation angle (rad) Lever t : Rotation time (S) Axis Rotary actuator Axis Allowable Load Application of the load on the axial direction is tolerated if no dynamic load is generated and the values are within what is shown in the
Do not drop, bump or apply excessive impacts (300m/s2 or more for reed switches and 1000m/s2 or more for solid state switches) while handling. Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction.
Static torque calculation Tf = F x L (Nm) Load . g = 9.8m/s2 F: Pressing force (N) : Angular acceleration Load .
Do not drop, bump, or apply excessive impacts (300 m/s2 or more for reed switches and 1000 m/s2 or more for solid state switches) while handling. Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction. 2. Do not carry a cylinder by the auto switch lead wires. Never carry a cylinder by its lead wires.
Movement Load : Angular acceleration F: Pressing force (N) T f = F x l (Nm) . 2 = (rad/s 2) Load Static torque calculation t 2 g = 9.8 m/s2 Ts = F x l (Nm) l : Rotation angle (rad) Lever t : Rotation time (S) Axis Rotary actuator Axis Allowable Load Application of the load on the axial direction is tolerated if no dynamic load is generated and the values are within what is shown in the
Movement Load : Angular acceleration F: Pressing force (N) T f = F x l (Nm) . 2 = (rad/s 2) Load Static torque calculation t 2 g = 9.8 m/s2 Ts = F x l (Nm) l : Rotation angle (rad) Lever t : Rotation time (S) Axis Rotary actuator Axis Allowable Load Application of the load on the axial direction is tolerated if no dynamic load is generated and the values are within what is shown in the
Do not drop, bump, or apply excessive impacts (300 m/s2 or more for reed switches and 1000 m/s2 or more for solid state switches) while handling. Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction. 2. Do not carry a cylinder by the auto switch lead wires. Never carry a cylinder by its lead wires.
Do not drop, bump, or apply excessive impacts (300 m/s2 or more for reed switches and 1000 m/s2 or more for solid state switches) while handling. Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction. 2. Do not carry a cylinder by the auto switch lead wires. Never carry a cylinder by its lead wires.
Do not drop, bump, or apply excessive impacts (300 m/s2 or more for reed switches and 1000 m/s2 or more for solid state switches) while handling. Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction. 2. Do not carry a cylinder by the auto switch lead wires. Never carry a cylinder by its lead wires.
Do not drop, bump, or apply excessive impacts (300 m/s2 or more for reed switches and 1000 m/s2 or more for solid state switches) while handling. Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction. 2. Do not carry a cylinder by the auto switch lead wires. Never carry a cylinder by its lead wires.
Do not drop, bump, or apply excessive impacts (300 m/s2 or more for reed switches and 1000 m/s2 or more for solid state switches) while handling. Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction. 2. Do not carry a cylinder by the auto switch lead wires. Never carry a cylinder by its lead wires.
Do not drop, bump, or apply excessive impacts (300 m/s2 or more for reed switches and 1000 m/s2 or more for solid state switches) while handling. Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction. 2. Do not carry a cylinder by the auto switch lead wires. Never carry a cylinder by its lead wires.
Do not drop, bump, or apply excessive impacts (300 m/s2 or more for reed switches and 1000 m/s2 or more for solid state switches) while handling. Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction. 2. Do not carry a cylinder by the auto switch lead wires. Never carry a cylinder by its lead wires.
Do not drop, bump, or apply excessive impacts (300 m/s2 or more for reed switches and 1000 m/s2 or more for solid state switches) while handling. Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction. 2. Do not carry a cylinder by the auto switch lead wires. Never carry a cylinder by its lead wires.
Do not drop, bump, or apply excessive impacts (300 m/s2 or more for reed switches and 1000 m/s2 or more for solid state switches) while handling. Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction. 2. Do not carry a cylinder by the auto switch lead wires. Never carry a cylinder by its lead wires.
Temperature abnormality On 16 Series E-MY2 Auto Switch Specifications Auto Switch Common Specifications Reed switch Solid state switch Type Leakage current 3-wire: 100 A or less 2-wire: 0.8 mA or less None Operating time 1.2 ms 1 ms or less 300 m/s2 1000 m/s2 Impact resistance 50 M or more at 500 VDC Mega (between lead wire and case) Insulation resistance Withstand voltage 1000 VAC for 1