SMC Corporation of America
Elite Part Number Search
Search Results "ZA1051-K15L-P1-M2"

Nil FKM 1349-80*1 N1 EPDM 2101-80*1 P1 Barrel Perfluoro 70W Q1 Kalrez 4079 R1 Chemraz SS592 R2 SS630 R3 SSE38 S1 VMQ 1232-70*1 T1 FKM for Plasma 3310-75*1 *1 Values at normal temperature, excluding gas permeation *2 Refer to Construction on page 5 for changed part. Number corresponds with the parts number on the construction drawing.

At this time, read vacuum pressure P1, obtain the suction flow rate from the flow rate characteristics graph for the ejector that is being used, and render this amount as the leakage of the workpiece.

Static moment M2 = m g (L1 + B) 103 m x g = 1 9.8 (50 + 48) 103 Review M2. Since M1 and M3 are not generated, review is unnecessary. = 0.96 [Nm] 2 = M2/M2 max = 0.96/4 = 0.24 M Guide shaft mounting surface L1 B We = 5 x 103m g U = 5 x 103 1 9.8 300 = 14.7 [N] Me3 = 1/3 We(L2 + A) 103 3.

L1 M2 = m g (L1 + B) 103 2. Static moment m x g = 1 9.8 (50 + 48) 103 Review M2. Since M1 & M3 are not generated, review is unnecessary. = 0.96 [Nm] 2 = M2/M2 max = 0.96/4 = 0.24 M Guide shaft mounting surface L1 B We = 5 x 103 m g U = 5 x 103 1 9.8 300 = 14.7 [N] Me3 = 1/3 We (L2 + A) 103 3.

Static moment M2 = m g (L1 + B) 103 m x g = 1 9.8 (50 + 48) 103 Review M2. Since M1 & M3 are not generated, review is unnecessary. = 0.96 [Nm] 2 = M2/M2 max = 0.96/4 = 0.24 M Guide shaft mounting surface L1 B We = 5 x 103 m g U = 5 x 103 1 9.8 300 = 14.7 [N] Me3 = 1/3 We (L2 + A) 103 3.

Static moment M2 = m g (L1 + B) 103 m x g = 1 9.8 (50 + 48) 103 Review M2. Since M1 & M3 are not generated, review is unnecessary. = 0.96 [Nm] 2 = M2/M2 max = 0.96/4 = 0.24 M Guide shaft mounting surface L1 B We = 5 x 103 m g U = 5 x 103 1 9.8 300 = 14.7 [N] Me3 = 1/3 We (L2 + A) 103 3.

L1 M2 = m g (L1 + B) 103 2. Static moment m x g = 1 9.8 (50 + 48) 103 Review M2. Since M1 & M3 are not generated, review is unnecessary. = 0.96 [Nm] 2 = M2/M2 max = 0.96/4 = 0.24 M Guide shaft mounting surface L1 B We = 5 x 103 m g U = 5 x 103 1 9.8 300 = 14.7 [N] Me3 = 1/3 We (L2 + A) 103 3.

(mm) a b Effective area (mm2) Weight (g) D L M2 Model 3.2 4 KJH02-23 KJH02-04 8.4 9.3 26.6 26.6 8.8 8.8 12.7 12.7 0.9 0.9 2.4 3.2 2 M1 M2 D D L Applicable tubing a Applicable tubing b Male elbow: KJL T H A Applicable tubing O.D.

Static moment M2 = m g (L1 + B) 103 m x g = 1 9.8 (50 + 48) 103 Review M2. Since M1 and M3 are not generated, review is unnecessary. = 0.96 [Nm] 2 = M2/M2 max = 0.96/4 = 0.24 M Guide shaft mounting surface L1 B We = 5 x 103m g U = 5 x 103 1 9.8 300 = 14.7 [N] Me3 = 1/3 We(L2 + A) 103 3.

Static moment M2 = m g (L1 + B) 103 m x g = 1 9.8 (50 + 48) 103 Review M2. Since M1 and M3 are not generated, review is unnecessary. = 0.96 [Nm] 2 = M2/M2 max = 0.96/4 = 0.24 M Guide shaft mounting surface L1 B We = 5 x 103m g U = 5 x 103 1 9.8 300 = 14.7 [N] Me3 = 1/3 We(L2 + A) 103 3.

L1 M2 = m g (L1 + B) 103 2. Static moment m x g = 1 9.8 (50 + 48) 103 Review M2. Since M1 & M3 are not generated, review is unnecessary. = 0.96 [Nm] 2 = M2/M2 max = 0.96/4 = 0.24 M Guide shaft mounting surface L1 B We = 5 x 103 m g U = 5 x 103 1 9.8 300 = 14.7 [N] Me3 = 1/3 We (L2 + A) 103 3.

Static moment M2 = m g (L1 + B) 103 m x g = 1 9.8 (50 + 48) 103 Review M2. Since M1 and M3 are not generated, review is unnecessary. = 0.96 [Nm] 2 = M2/M2 max = 0.96/4 = 0.24 M Guide shaft mounting surface L1 B We = 5 x 103m g U = 5 x 103 1 9.8 300 = 14.7 [N] Me3 = 1/3 We(L2 + A) 103 3.

MHCM2-7S D8.3 205.2 2-M2 x 0.4 thread (Mounting thread) 2-M2 x 0.4 depth 4 (Mounting thread) 2.5 2 1.5 When open 20 When closed 7 10 6 4.5 15 11 7.7 1.8 16.5 6 100.05 (23) M3 x 0.5 (Finger closing port) 2-M2 x 0.4 thread (Attachment mounting thread) 4 0 0.03 3 12-8-23

Static moment M2 = WL1 = 100.05 = 0.5 [Nm] 2 = M2/M2max = 0.5/16 = 0.031 W = 1 [kg] =10 [N] Investigate M2. Since M1 & M3 are not generated, investigation is unnecessary. Find the value of M2max when Va = 300mm/s from . W M L1 From V = 1.4Va We = WV = 4/100101.4300 = 168 [N] Me3 = 1/3We(L2-A) = 1/31680.032 = 1.8 [Nm] 3 = Me3/Me3max = 1.8/7.2 = 0.250 3.

MHCM2-7S D8.3 205.2 2-M2 x 0.4 thread (Mounting thread) 2-M2 x 0.4 depth 4 (Mounting thread) 2.5 2 1.5 When open 20 When closed 7 10 6 4.5 15 11 7.7 1.8 16.5 6 100.05 (23) M3 x 0.5 (Finger closing port) 2-M2 x 0.4 thread (Attachment mounting thread) 4 0 0.03 3 12-8-23

SV1000-67-1A S0700 SV2000-67-1A M2: 0.16 Nm M3: 0.8 Nm M4: 1.4 Nm SV3000-67-1A VQ SV4000-67-1A VQ4 Silencer with One-touch fitting This silencer can be quickly mounted on the manifolds E (exhaust) port.

= d x e x f x Relative density m2 = 4 x 5 + 6 x 2.7 x 10-6 = 3.24 x 10-4 (kg) Inertial moment around Z2 axis IZ2 = {m2 (d2 x e2) / 12} x 10-6 IZ2 = {3.24 x 10-4 x (42 + 52) / 12} x 10-6 = 1.11 x 10-9 (kg.m2) = 1.11 x 10-9 + 3.24 x 10-4 x 23.52 x 10-6 = 0.18 x 10-6 (kg.m2) Inertial moment around Z axis IB = IZ2 x m2r22 x 10-6 IB Thus, the total inertial moment is I = IA x B I = 0.20 x 10

Dimensions Vacuum suction 2-M2 x 3 (Counter sunk Phillips screw for precision equipment) 2-M2 x 3 (Round head Phillips screw for precision equipment ) Relief port Cover installed in end cap section Vacuum suction Relief port 11-MXP 2-M3 x 8 (hexagon socket head screw) 2-M2 x 5 (hexagon socket head screw) MXP10, 12, 16 MXP6 Note Applicable size Switch rail model MXP 65 MXP-AD 65 MXP 6-10 MXP10

Static moment M2 = WL1 = 100.2 = 2 [Nm] 2 = M2/M2 max = 2/16 = 0.125 W = 1 [kg] = 10 [N] W Review M2. Since M1 & M3 are not generated, review is unnecessary. M L1 3. Dynamic moment We = 5 x 10-3WgU = 5 x 10-31.9.8500 = 25 [N ] Me3 = 1/3We(L2-A) = 1/3250.182 = 1.52 [Nm] 3 = Me3/Me3max = 1.52/6 = 0.25 Me3 Review Me3. (For Memax, find the value in when U = 500mm/s.)

Dimensions 2-M2 x 3 (Countersunk head Phillips screw for precision instruments) 2-M2 x 3 (Cross recessed head machine screw for precision instruments) 2-M3 x 8 (Bolt with hex. hole) 2-M2 x 5 (Bolt with hex. hole) MXP10/12/16 MXP6 Applicable size Switch rail part no.