+m2 3 a12 3 a22 12 4a12 + b2 = m1 CRBU2 12 4a22 + b2 + m2 CRB1 7.
Vertical mounting: 0 (None) Data NO Confirmation of sum of load ratio to the guide unit n 1 The moment load rate must be calculated in accordance with the above formula for all types, M1 to M3. As for Wmax and Mn, refer to the maximum load mass and allowable moment table in the next section.
105 130 150 190 212 236 30 35 35 40 40 50 50 56 59 67 73 77 85 69 78 84 92 100 44 52 64 78 92 115 128 144 16 20 20 25 30 36 36 40 42 50 59 76 92 100 112 118 27 32 32 37 37 47 47 53 40 50 55 65 80 90 90 90 60 70 86 102 116 145 161 182 32 40 40 52 52 59 59 59 43 43 43 9.0 9.0 11.5 13.5 13.5 19 19 19 112.5 121 133 141.5 150 167 Bore (mm) W/o rod boot W/ rod boot KA N H1 K MM GA FV J W M S M1
(Mounting position: Horizontal) W 1000 500 400 Allowable lateral load W (N) 300 Allowable kinetic energy 200 Piston speed 200 180 200 100 180 Piston speed Allowable kinetic energy 20 to 400mm/s 12.4J 50 40 30 (m1 + m2) V Kinetic energy E (J) = 2 m1: Weight of moving cylinder parts kg m2: Load weight kg V: Piston speed m/s 20 10 0 20 40 60 80 100 120 140 160 180 200 220 260 240 280 300 Kinetic
Cylinder (including thin round plate) Position of rotational axis: Through the plate's central axis Position of rotational axis: Perpendicular to the shaft anywhere along its length I = m1 x + m2 x 3 a1 3 a2 I = m x 2 r 2. Thin shaft Position of rotational axis: Through the shaft's center of gravity 7.
(=M3) M2 M3 M1 M2 1.25 1.68 Slide 12 3 0.53 0.70 Ball bushing 3.34 4.25 Slide 16 7 1.53 2.11 Ball bushing 11.4 17.1 Slide l l 20 12 5.60 7.28 Ball bushing Note) For the purpose of calculating the moment, the length of the arm is the distance that is measured from the guide shaft center ( mark).
5 15-17-5 6 Series AS-FPQ/FPG Dimensions H (width across flats) Applicable tubing O.D. d A L4 D1 L3 D2 M1 L1 L2 T M5 type H (width across flats) Applicable tubing O.D. d A A4 D1 L3 D2 M1 L1 T L2 Model Weight (g) Note 2) Tubing O.D. d T H D1 D2 L1 L2 L3 M1 L4 Max. Min. Max. 1 2 Min.
MK/MK2 RSQ/RSG RSH CE1 CE2 ML2B ML1C REA Calculation for Moment of Inertia I: Moment of Inertia (kgm2) m: Load weight (kg) REC qThin bar Position of rotary axis: Vertical to the bar and through the end rThin rectangular plate Position of rotary axis: Vertical to the plate and through the end RHC a22 3 I = m1 + m2 4a12+b2 12 4a22+b2 12 I = m1 + m2 a12 3 MTS CC wThin bar Position of rotary
Position of rotation axis: Parallel to side b and passes a center of gravity. 1=m 12 a 2 1=m 4 r 2 oWith a load at the lever end rThin rectangle board (Parallelogram) Position of rotation axis: Perpendicular to the board and passes through center line. 2 1 2 2 a +K 1=m1 +m2 3 a Ex.)
L1 L2 T M5 type H (width across flats) Applicable tubing O.D. d A A4 D1 L3 D2 M1 L1 T L2 Model Weight (g) Note 2) Tubing O.D. d T H D1 D2 L1 L2 L3 M1 L4 Max.
Cylinder (including thin round plate) Position of rotational axis: Through the plate's central axis Position of rotational axis: Perpendicular to the shaft anywhere along its length I = m1 x + m2 x 3 a1 3 a2 I = m x 2 r 2. Thin shaft Position of rotational axis: Through the shaft's center of gravity 7.
L1 L2 T M5 type H (width across flats) Applicable tubing O.D. d A A4 D1 L3 D2 M1 L1 T L2 Model Weight (g) Note 2) Tubing O.D. d T H D1 D2 L1 L2 L3 M1 L4 Max.
D1 Port B min. port size Weight (g) D2 L1 L2 L3 L4 P Q1 Q2 M1 M2 4 4 6 KM16-06-06-3 12.8 4 6 KM16-04-04-3 16 17 17 KM16-04-06-3 6 16 16 17 19 18 3 4.5 18 4.5 12.8 68 20.9 16 11 14.5 50 10.5 65
W: Work load (N) L1, L2, L3: Amount of overhang to work piece center of gravity (mm) a: Table acceleration (mm/s) Mounting position Direction of load movement Model LJ1H10 LJ1H20 LJ1H30 Horizontal/Lateral Horizontal/Lateral Vertical Lateral Horizontal a M1 2000 a=1000 a=1000 2000 2000 a=1000 L1 mm L1 mm L1 mm Pitching W a=2000 a=2000 a=3000 a=3000 a=2000 1000 1000 1000 L1 a=3000 0 2 4 6 8
M1 L M2 D 4 KCH04-00 KCH06-00 KCH08-00 KCH10-00 KCH12-00 42.1 45.8 52.8 59.8 63.5 10.4 12.8 15.2 18.5 20.9 2.6 6.8 16.2 25.6 35.4 18 19 21.5 24 25.5 16 17 18.5 21 22 2.6 6.8 13.1 20.4 30.4 5 8 11 18 24 6 8 10 12 Note) D: max. diameter Straight plug for frequent use: KCH Applicable tube O.D.
0Gear transmission oLoad at lever end Number of teeth = a = m1 a12 1. Find the inertial moment B for the rotation of shaft (B). 3 + m2 a22 + K (Example) When shape of m2 is a sphere, refer to 7, and K = m2 2r2 2.
This is a legacy product. Please contact us for the latest version.sales@ocaire.com, VACUUM EJECTOR, COMPACT, VACUUM SERIES, ZA COMPACT VACUUM EJECTOR, BG, ZA NOZZLE SIZE 0.5, .43375 lb
As a guide, when W + P0a > P0A, adjust P1, so that it could be W + P1a = P0A. (1) The speed is controlled with meter-out control. When the meterin controller is used in conjunction with the meter-out controller, lurching is reduced. () (2) Installing a regulator with check valve at position (b) can decrease lurching during descent, and actuation delay during ascent.
fitting dimension Y W Plate thickness ARP20(K), ARP30(K) : Max. 3.5 ARP40(K) : Max. 5 OUT IN 1021 1021 Z Pressure Gauge Option Digital pressure switch (Electrical entry: Wiring top entry) Digital pressure switch (Electrical entry: Wiring bottom entry) Option Round type pressure gauge J J J H Dimensions Center of piping H Center of piping H Center of piping Standard specifications Model P1
Example) Lead wire length 2000 mm Electrical entry When ordering cylinder with valve CVQM32-30-M9B-5MOZ SY100-30-4A-20 M-type plug connector with lead wire (Lead wire length 300 mm) M MO M-type plug connector without connector 5 Series CVQM Dimensions 32 to 63 EXH 2 x P2 F SUP P1 S S Q 2 x HB through Manual button 2 x HA through V W 2 x 2 x OA effective length RA KA 2 x N through Y EB (KB