SMC Corporation of America
Elite Part Number Search
Search Results "MSQB100R-M9B-XN"

Courtesy of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com High precision type MSQ B 10 A M9B Basic type Number of auto switches Nil S n 2 pcs. 1 pc. n pcs.

Data Reed switchD-A90(V)/A93(V)/A96(V) Solid state switchD-M9N(V)/M9P(V)/M9B(V) F9NW(V)/F59W/F9BW(V) F9BAL Auto Switch Mounting Bracket Part No.

Wn X-axis Xn Y-axis Yn Z-axis Zn Z X Wa 65 mm 0 mm 0.88 kg 5 mm 111 Wb 150 mm 0 mm 4.35 kg 42.5 mm 210 Y Y Wc 150 mm 111 mm 0.795 kg 42.5 mm Wd 150 mm 210 mm 0.5 kg 42.5 mm n = a, b, c, d 3.

Wn Y-axis Yn Z-axis Zn X-axis Xn Z X Wa 0 mm 5 mm 0.88 kg 65 mm 111 Wb 0 mm 42.5 mm 4.35 kg 150 mm 210 Y Y Wc 111 mm 42.5 mm 0.795 kg 150 mm Wd 210 mm 42.5 mm 0.5 kg 150 mm n = a, b, c, d 3.

D-M9P D-M9NV D-M9B D-M9N D-M9PV D-M9BV Auto switch part no.

LC7 LC7 E-MY2 X168 Refer to the standard model no. on page 1126, 1132 M Stroke range: 51 to 599 mm LC8 LC8 Example) E-MY2H25-300TAN-M9B-X168 E-MY2H XB10 Refer to the standard model no. on page 1132 LXF LXF Example) E-MY2H25-599TAN-M9B-XB10 LXP LXP 2 Long Stroke XB11 LXS LXS Available with long strokes exceeding the standard stroke range.

With internal shock absorber With adjustment bolt 1 1 MSQB200A MSQB100A MSQB200R 0.1 MSQB100R MSQB70A MSQB70R 0.1 MSQ50A MSQ30A MSQ20A 0.01 Inertial moment (kgm2) Inertial moment (kgm2) MSQ50R MSQ10A 0.001 0.01 MSQB7A MSQ10R MSQB3A 0.0001 MSQB2A MSQB1A MSQ20RMSQ30R 0.001 0.01 0.01 0.0001 0.2 0.3 0.4 0.6 0.5 1.0 0.9 0.8 0.7 0.2 0.5 3.0 2.0 1.0 0.7 0.3 Rotation time (s/90) Rotation time (s/

Wn Mass mn X-axis xn xa xb xc xd Y-axis yn ya yb yc yd Z-axis zn za zb zc zd X 1 mt = x (mn x xn)w Wa Wb Wc Wd ma mb mc md Y 1 mt = x (mn x yn)e D1 mt = x {mn x (A + zn)} r Z -X (n = a,b,c,d) Refer to the following sections 1 to 4 to calculate the center of gravity and the total load.

Wn Mass mn X-axis Xn Y-axis Yn Z-axis Zn Z X Wa 0.88 kg 65 mm 0 mm 5 mm 111 Wb 4.35 kg 150 mm 0 mm 42.5 mm Y 210 Y Wc 0.795 kg 150 mm 111 mm 42.5 mm Wd 1.5 kg 150 mm 210 mm 42.5 mm n = a, b, c, d 3 Composite Center of Gravity Calculation m3 = mn = 0.88 + 4.35 + 0.795 + 1.5 = 7.525 kg m3 1 X = x (mn x xn) 7.525 1 = (0.88 x 65 + 4.35 x 150 + 0.795 x 150 + 1.5 x 150) = 140.1 mm m3 1 Y = x

Wn Y Y-axis Yn X-axis Xn Z-axis Zn X Wa 65 mm 0 mm 5 mm 0.88 kg 210 65 150 111 Z Wb 150 mm 0 mm 42.5 mm 4.35 kg Wc 150 mm 111 mm 42.5 mm 0.795 kg Wd 150 mm 210 mm 42.5 mm 0.5 kg Y 42.5 5 n = a, b, c, d 3.

Wn Y Y-axis Yn Z-axis Zn X-axis Xn X Wa 65 mm 0 mm 5 mm 0.88 kg 210 65 150 111 Z Wb 150 mm 0 mm 42.5 mm 4.35 kg Wc 150 mm 111 mm 42.5 mm 0.795 kg Wd 150 mm 210 mm 42.5 mm 0.5 kg Y 42.5 5 n = a, b, c, d 3.

Wn Weight mn X-axis Xn Y-axis Yn Z-axis Zn Z X Wa 0.88 kg 65 mm 0 mm 5 mm 111 Wb 4.35 kg 150 mm 0 mm 42.5 mm Y 210 Y Wc 0.795 kg 150 mm 111 mm 42.5 mm Wd 1.5 kg 150 mm 210 mm 42.5 mm n = a, b, c, d 3.

Load Blocking Mass and Center of Gravity for Each Workpiece 5 42.5 65 150 Center of gravity Mass mn Workpiece Wn Y-axis Yn X-axis Xn Z-axis Zn Z X Wa 0 mm 5 mm 0.88 kg 65 mm 111 210 Wb 0 mm 42.5 mm 4.35 kg 150 mm Y Y Wc 111 mm 42.5 mm 0.795 kg 150 mm Wd 210 mm 42.5 mm 0.5 kg 150 mm n = a, b, c, d 3.

Wn Y X-axis Xn Y-axis Yn Z-axis Zn X Wa 5 mm 0 mm 65 mm 0.88 kg 210 65 150 111 Z Wb 42.5 mm 0 mm 150 mm 4.35 kg Wc 42.5 mm 111 mm 150 mm 0.795 kg Wd 42.5 mm 210 mm 150 mm 0. 5kg Y 42.5 5 n = a, b, c, d 3 Composite Center of Gravity Calculation m1 = mn = 0.88 + 4.35 + 0.795 + 0.5 = 6.525 kg 1 m1 X = x (mn x xn) 1 6.525 = (0.88 x 65 + 4.35 x 150 + 0.795 x 150 + 0.5 x 150) = 138.5 mm 1 m1 Y