/s PB08 PG2 37 rad/s PB09 VG2 823 rad/s PB10 VIC 33.7 ms PB11 VDC 980 PB12 0 PB13 NH1 1 4500 Hz PB14 NHQ1 1 0h PB15 NH2 2 4500 Hz PB16 NHQ2 2 0h PB17 PB18 LPF 3141 rad/s PB19 VRF1 100.0 Hz PB20 VRF2 100.0 Hz PB21 0.00 PB22 0.00 PB23 VFBF 0h PB24 *MVS 0h PB25 0h PB26 *CDP 0h PB27 CDL 10 PB28 CDT 1 ms PB29 GD2B 7.0 PB30 PG2B 37 rad/s PB31 VG2B 823 rad/s PB32 VICB
Abbreviation Name Setting Unit PB07 PG1 Model loop gain 100 rad/s PB06 GD2 Ratio of load inertia moment to servo motor inertia moment 4.0 Multiplier ( 1) PB08 PG2 Position loop gain 120 rad/s PB09 VG2 Speed loop gain 3000 rad/s PB10 VIC Speed integral compensation 20 ms PB29 GD2B Gain changing ratio of load inertia moment to servo motor inertia moment 10.0 Multiplier ( 1) PB30 PG2B Gain changing
Abbreviation Name Setting Unit PB06 GD2 Load to motor inertia moment ratio 4.0 Multiplier ( 1) PB07 PG1 Model loop gain 100 rad/s PB08 PG2 Position loop gain 120 rad/s PB09 VG2 Speed loop gain 2 3000 rad/s PB10 VIC Speed integral compensation 20 ms PB29 GD2B Gain changing load to motor inertia moment ratio 10.0 Multiplier ( 1) PB30 PG2B Gain changing position loop gain 84 rad/s PB31 VG2B
Refer to the following table for details. 15.0 1.0 to [rad/s] 2000.0 Pr.
When a value less than 1.0 rad/s is set, the value will be the same as that of [Pr. PB07]. This parameter will be enabled only when the following conditions are fulfilled. [rad/s] "Gain adjustment mode selection" is set to "Manual mode (_ _ _ 3)" in [Pr. PA08].
PB60 ] 12 7 17 7. 7.2.4 (1) (a) PB06 GD2 4.00 [] PB07 PG1 100 [rad/s] PB08 PG2 120 [rad/s] PB09 VG2 3000 [rad/s] PB10 VIC 20 [ms] PB19 VRF11 1 50 [Hz] PB20 VRF12 1 50 [Hz] PB21 VRF13 1 0.20 PB22 VRF14 1 0.20 PB52 VRF21 2 20 [Hz] PB53 VRF22 2 20 [Hz] PB54 VRF23 2 0.10 PB55 VRF24 2 0.10 PB29 GD2B 10.00 [] PB60 PG1B 50 [rad/s] PB30 PG2B 84 [rad/s] PB31 VG2B 4000 [rad
PB08 PG2 Position loop gain rad/s PB09 VG2 Speed loop gain rad/s PB10 VIC Speed integral compensation ms Used to set the ratio of load inertia moment to servo motor inertia moment after changing.
Abbreviation Name Setting Unit PB07 PG1 Model loop gain 100 rad/s PB06 GD2 Ratio of load inertia moment to servo motor inertia moment 4.0 Multiplier ( 1) PB08 PG2 Position loop gain 120 rad/s PB09 VG2 Speed loop gain 3000 rad/s PB10 VIC Speed integral compensation 20 Ms PB29 GD2B Gain changing ratio of load inertia moment to servo motor inertia moment 10.0 Multiplier ( 1) PB30 PG2B Gain changing
PB06 GD2 4.0 PB07 PG1 100 rad/s PB08 PG2 120 rad/s PB09 VG2 3000 rad/s PB10 VIC 20 ms PB19 VRF1 50 Hz PB20 VRF2 50 Hz PB29 GD2B 10.0 PB30 PG2B 84 rad/s PB31 VG2B 4000 rad/s PB32 VICB 50 ms PB26 CDP 0001 ( ) PB28 CDT 100 ms PB33 VRF1B 60 Hz PB34 VRF2B 60 Hz (b) OFF OFF ON 63.4 CDT100ms 100 4.0 10.0 4.0 120 84 120 3000 4000 3000 20 50 20 50 60 50
Tf = mg l Ts: Static load (Nm) F : Clamping force (N) l : Distance from the rotation center to the clamping position (m) Ta: Inertial load (Nm) : Moment of inertia (kgm2) : Angular acceleration (rad/s2) : Rotation angle (rad) t : Rotation time (s) Friction force is applied in rotating direction.
Ts : Static load (Nm) F : Clamping force (N) L : Distance from the rotation center to the clamping position (m) Tf = mgL Ta : Inertial load (Nm) : Moment of inertia (kgm2) : Angular acceleration (rad/s2) : Rotation angle (rad) t : Rotation time (s) Friction force is applied in rotating direction.
The end angular speed is obtained by: Table (10) Allowable kinetic energy Allowable kinetic energy (J) Rotation angle rad (90 :1/2 rad) (180 : rad) Rotation time s Kinetic energy E is obtained by: Size Without With t Air Cushion Air Cushion 30 0.01 0.12 50 0.05 0.98 63 0.12 1.50 80 0.16 2.00 The allowable kinetic energy of the actuators with a cushion is the maximum absorbed energy when
The end angular speed is obtained by: Table (11) Allowable kinetic energy Allowable kinetic energy (J) Rotation angle rad (90 :1/2 rad) (180 : rad) Rotation time s Kinetic energy E is obtained by: Size Without With t 30 0.01 Air Cushion Air Cushion 50 0.05 0.98 63 0.12 1.50 80 0.16 2.00 The allowable kinetic energy of the actuators with a cushion is the maximum absorbed energy when the
The end angular speed is obtained by: Table 10 Allowable kinetic energy Allowable kinetic energy J Rotation angle rad (90 :1/2 rad) (180 : rad) Rotation time s Kinetic energy E is obtained by: t Size Without With Air Cushion Air Cushion 50 0.05 0.98 63 0.12 1.50 80 0.16 2.00 The allowable kinetic energy of the actuators with a cushion is the maximum absorbed energy when the cushion needle
(rad/s) : Rotation . (rad) 180 = 3.14rad t: Rotation time .
I 2 2 t E EKinetic energy (J) I Moment of inertia (kg / m2) :Rotating angle (rad) 180o = 3.14 rad During uniform acceleration, angular speed after t seconds and displacement angle can be found as shown below. x t (1) t d t 1 / 2 t + C (2) C is integration constant. When t = 0, rotation angle = 0, so the integration constant is C = 0.
Since Rotary Actuator reaches the rotation end during acceleration, terminal acceleration "" can be found by = 2 / t :Rotation angle (rad) t:Rotation time (s) Since Kinetic energy E is E = 1 / 2I2 Rotation time "t" of Rotary Actuator is I 2 2 t E EAllowable kinetic energy (J) IMoment of inertia (kgm2) Rotating angle (rad) 180o = 3.14 rad In uniformly angular accelerated motion, angular
The end angular speed is obtained by: Table (9) Allowable kinetic energy Allowable kinetic energy (J) t Size With Without Rotation angle rad (90:1/2rad) (180:rad) Rotation time s Air Cushion Air Cushion 30 0.01 50 0.05 0.98 63 0.12 1.50 Kinetic energy E is obtained by: 80 0.16 2.00 100 0.54 2.90 The allowable kinetic energy of the actuators with a cushion is the maximum absorbed energy
E1 2 I E[J]I[kg][rad/s] Imr m[kg] rm 5.1 19 I I I I kg kg kg kg m m m m 2 2 2 2 m: m: m: m: kg kg kg kg b 20 5-2. 5.1 5.1 32 0.023[J] 40 0.028[J] 2 t [rad]t[s] E E1 2 I t E 2 I t E[J][rad]I[kg] 2 t (1) t = & (2) C C t 2 1 tdt 2 + = = & & t=0 =0C=0 t 2 1 t 2 1 2 = = & t 2 = 21 5-3.
/sec m mm MPa N Nm cycle/min C 2 gh m RHC R m 2 1 2 m 2 1 2 1 2 T S R 2 mgh F1S m Nm C m/s kg S T t m MK(2) E1 + E2 mgS F1S mgS mgS F1S + mgS RS Q G 2 2 E1 + E2 E1 + E2 E1 + E2 E1 + E2 E1 + E2 E Corresponding weight of impact object 2 2 E 2 2 E 2 2 E 2 2 Me kg RS H A E 2 E 2 Angle speed Friction coefficient rad/s 2.