3 metre LED 24v DC 100v AC 200v AC 550 mA 525 mA 512.5 mA 2 wire Tie rod mount reed Grommet DA54L 3 metre LED 2 wire Band mount reed Grommet DB53L 24v DC 550mA 3 metre LED 24v DC 100v AC 200v AC 550 mA 5-25 mA 512.5 mA 2 wire Band mount reed Grommet DB54L 3 metre LED 3 wire Solid state NPN tie rod Grommet DF59L 5, 12, 24v DC 28v DC or less 40 mA or less 3 metre LED 3 wire Solid state PNP
side mounting 17.5 17.5 3 1/8" PE. port 3 1/8" PE. port 38 70 38 53 Dimensions Formula: L1 = 25n + 63, L2 = 25n + 76 n: Stations (Maximum 16 stations) Dimensions Formula: L1 = 25n + 63, L2 = 25n + 76 n: Stations (Maximum 16 stations) n L 1 2 3 4 5 6 7 8 L1 88 113 138 163 188 213 238 263 L2 101 126 151 176 201 226 251 276 n L 1 2 3 4 5 6 7 8 L1 88 113 138 163 188 213 238 263 L2 101 126 151
) 1 W DC (83 mA) 1 (P) 5 (R1) 3 (R2) Power consumption (Current) 24 VDC 12 VDC 2-position double (Rubber) Note 1) Use dry air to prevent condensation at low temperatures.
M = W x 9.8 (Ln + An)/1000 Corrected value of moment center position distance An: Table (1) Find the allowable static moment Ma (Nm). Pitch, Yaw moment: Graph (2) Roll moment: Graph (3) 0.6 Find the load factor of the static moment. Mar N.m 1 = M/Ma 1 = 0.042/0.6 = 0.07 100 Va mm/s 3-2 Load Factor of Dynamic Moment Find the dynamic moment Me (Nm). Examine Mep.
How to order lead wire length (Example) L D-F9P Specifications Nil Lead wire length 0.5 m 3 m 5 m L Z CD-P11 CD-P12 24 VDC 50 mA 200 VAC 12.5 mA 100 VAC or less 25 mA Part no.
Yaw moment M3 = W4 x L2 L2 Data YES Is there any influence of noise? (Refer to Caution on Handling on pages 6 and 7.) Install a noise filter.
Yaw moment M3 = W4 x L2 L2 YES Is there any influence of noise? (Refer to Caution on Handling on pages 6 and 7.) Install a noise filter.
Yaw moment M3 = W4 x L2 L2 Data YES Is there any influence of noise? (Refer to Caution on Handling on pages 6 and 7.) Install a noise filter.
Model Allowable Moment (Nm) Allowable dynamic moment Model Mounting orientation Load movement direction LTF6 200 Horizontal/Lateral Horizontal/Lateral Lateral Horizontal a Mep L1 (mm) Pitching 100 m a=1000 a=2000 a=3000 L1 30 20 10 0 Transfer load m (kg) L2 200 a=1000 a=2000 a=3000 Mer L2 (mm) Rolling Yawing 100 m L2 Mer 30 20 10 0 m Transfer load m (kg) 200 a=1000 a=2000 a=3000 L3 (mm) 100
L3 L4 L5 L6 P Q1 Q2 MA MB Mass (g) KM11-04-08-6 6 65 40 22 4 8 10 18 29.5 19.5 27 10.6 12 16 18.5 6 KM11-04-08-10 10 86 61.5 30 KM11-06-10-6 6 76 47 32 6 10 10 19.5 31.5 21.5 31 13 13.5 17 21 7.5 KM11-06-10-10 10 102 73 44 KM11-08-12-6 6 85 55 44 8 12 11.5 22.5 35.5 24 34.5 15.5 14.7 18.5 22 9 KM11-08-12-10 10 116 86 62 L5 FB N L1 L2 L3 L4 L6 P Q1 Q2 MA MB FA B Port Min Weight Model Inside
Type Symbol sensor Flow rate Flow rate Temp. 1 Analogue 1 to 5 V None 2 Analogue 4 to 20 mA Remote sensor 1T Analogue 1 to 5 V Analogue 1 to 5 V With temp. sensor 2T 1 Analogue 4 to 20 mA Analogue 4 to 20 mA A NPN NPN B PNP PNP C NPN Analogue 1 to 5 V D NPN Analogue 4 to 20 mA None E PNP Analogue 1 to 5 V F PNP Analogue 4 to 20 mA G 1 NPN External input 2 Integrated display type H 1 PNP External
V VY130-6 VY140-6 VY150-6 1 1 1 0 2.5 5 7.5 10 0 2.5 5 7.5 10 0 2.5 5 7.5 10 V V V VY130-7 VY140-7 VY150-7 2 2 2 4 0 8 12 16 20 mA 4 0 8 12 16 20 mA 4 0 8 12 16 20 mA VY130-8 0 5 10 15 20 VY140-8 0 5 10 15 20 VY150-8 0 5 10 15 20 3 3 3 mA mA mA Command signal Command signal Command signal VY1700 1 VY1900 1 Input signal voltage (current) for starting the operation of a pilot valve VY1D0 (
V VY130-6 VY140-6 VY150-6 1 1 1 0 2.5 5 7.5 10 0 2.5 5 7.5 10 0 2.5 5 7.5 10 V V V VY130-7 VY140-7 VY150-7 2 2 2 4 0 8 12 16 20 mA 4 0 8 12 16 20 mA 4 0 8 12 16 20 mA VY130-8 0 5 10 15 20 VY140-8 0 5 10 15 20 VY150-8 0 5 10 15 20 3 3 3 mA mA mA Command signal Command signal Command signal VY1700 1 VY1900 1 Input signal voltage (current) for starting the operation of a pilot valve VY1D0 (
(Example) For M3: L2 = 6 Applicable shaft types: K, T L2 + (3 x P) L2 = (mm) (mm) K axis T axis Q1 Q2 Q1 = M L1 = L1 + (3 x P) Shaft type Shaft type J K T K T Size Size 50 50 M3, M4, M5, M6 M3, M4, M5, M6 L2 + (3 x P) L2 = 63 63 M4, M5, M6 M4, M5, M6 Q2 = M Q2 = M 80 80 M4, M5, M6, M8 M4, M5, M6, M8 100 100 M5, M6, M8, M10 M5, M6, M8, M10 Symbol: A35 Machine female threads into the long
D2 L1 L2 L3 P Q1 Q2 A MB MA tube O.D.
San=a1+a2+a31 3.11-10 Air Slide Table Series MXS Allowable load: W (N) Fig.1 Overhang: Ln (mm), Correction value for moment center distance An (mm) Fig.2 Pitch moment Yaw moment Roll moment W My Mp Mr W W W Static moment Dynamic moment L1 A1 L3 A5 L2 A3 CL W Mp Mr My W W MLGC L3 A6 W L1 A2 L2 A4 CNA W Mey Mep CB L2 A4 CV/MVG A2 L3 Work mounting coefficient: K Fig.3 CXW Table mounting CXS
Ma = K Mmax Workpiece mounting coefficient K: Fig. (3) Allowable moment coefficient : Graph (2) Maximum allowable moment Mmax: Table (4) 2 = M/Ma Find the allowable static moment Ma (Nm).
My = 1 x 9.8 (10 + 30)/1000 = 0.39 A3 = 30 Ma = KMmax Workpiece mounting coefficient K: Fig. (3) Allowable moment coefficient : Graph (2) Maximum allowable moment Mmax: Table (4) 2 = M/Ma Find the allowable static moment Ma (Nm).
Mr=2(20+6.8)/1000=0.054 A2=6.8 Calculate allowable static moment Ma(Nm). Mar=14.2=4.2 =1 Mr max.=4.2 2=0.054/4.2=0.013 Calculate load rate (2) of static moment. 2=M/Ma 3-3 Load rate of kinetic moment Calculate kinetic moment Me(Nm).
When sum of load rate does not exceed 1, it is possible to use. n=1+2+3 1 < = < = 47 MXS Series Air Slide Table How To Select Allowable load: W(N) Fig.1 Overhung: Ln(mm), Correction value for moment center distance An (mm) Fig.2 Pitch moment Yaw moment Roll moment W My Mp Mr W W W Static moment Kinetic moment L1 A1 L3 A5 L2 A3 W Mp Mr My W W L3 A6 W L1 A2 L2 A4 W Mey Mep L2 A4 A2 L3 Work