(mm) I Weight (g) Nylon Urethane M1 D1 D2 L1 Q L2 P M2 Part No. 9.7 11.7 8 6 35.5 40.5 6 4 KGUD06-08 KGUD04-06 10.4 18.2 16 12.8 20.3 17 12.8 15.2 10.4 12.8 21 26 17 18.5 4.2 13.4 4.2 13.4 11 19 Plug-in reducer: KGR Effective orifice(mm 2) Applicable tube O.D. (mm) Applicable fitting size d Part No.
acceleration (mm/s) Mounting position Direction of load movement Model LJ1H10 LJ1H20 LJ1H30 Horizontal/Lateral Horizontal/Lateral Vertical Lateral Horizontal a M1 2000 a=1000 a=1000 2000 2000 a=1000 L1 mm L1 mm L1 mm Pitching W a=2000 a=2000 a=3000 a=3000 a=2000 1000 1000 1000 L1 a=3000 0 2 4 6 8 10 0 10 20 30 0 20 40 60 Work load (W) kg Work load (W) kg Work load (W) kg 600 600 600 L2 M2
(mm) I Weight (g) Nylon Urethane M1 D1 D2 L1 Q L2 P M2 Part No. 9.7 11.7 8 6 35.5 40.5 6 4 KGUD06-08 KGUD04-06 10.4 18.2 16 12.8 20.3 17 12.8 15.2 10.4 12.8 21 26 17 18.5 4.2 13.4 4.2 13.4 11 19 Plug-in reducer: KGR Effective orifice(mm 2) Applicable tube O.D. (mm) Applicable fitting size d Part No.
PA PAX PB Flow Characteristics Water Air Orifice size (mm ) Port size Av x 10-6 m2 12 (INN.C.) 13 (INN.O.) 12 (INN.C.) 13 (INN.O.) Model C [dm3/(sbar)] C [dm3/(sbar)] Av x 10-6 m2 Cv converted Cv converted b Cv b Cv N.O.
IN Model/Valve Specifications
.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com Components Valve unit + Ejector unit Individual, common and port exhaust style for nozzle size 10, 13 Common and port exhaust style for nozzle size 15 Individual exhaust style for nozzle size 15 M2 x 0.4 x 13 2 2 2 2 2 2 2 4 4 M2 x 0.4 x 23 M2 x 0.4 x
Vacuum ejector series ZA is compact and lightweight, making it ideal for pick and place operations, and suitable to all industries. Due to the compact design of the ZA, it is possible to install on moving parts. The shortened tube length to pad improves response time. The ZA is available as a single unit or manifold type, with or without pressure sensors and suction filters. Compact vacuum
Vacuum ejector series ZA is compact and lightweight, making it ideal for pick and place operations, and suitable to all industries. Due to the compact design of the ZA, it is possible to install on moving parts. The shortened tube length to pad improves response time. The ZA is available as a single unit or manifold type, with or without pressure sensors and suction filters. Compact vacuum
Vacuum ejector series ZA is compact and lightweight, making it ideal for pick and place operations, and suitable to all industries.? Due to the compact design of the ZA, it is possible to install on moving parts.? The shortened tube length to pad improves response time.? The ZA is available as a single unit or manifold type, with or without pressure sensors?and suction filters.? Compact
This is a legacy product. Please contact us for the latest version.sales@ocaire.com, VACUUM EJECTOR, COMPACT, VACUUM SERIES, ZA COMPACT VACUUM EJECTOR, BG, ZA NOZZLE SIZE 0.5, .00000 lb
This is a legacy product. Please contact us for the latest version.sales@ocaire.com, VACUUM EJECTOR, COMPACT, VACUUM SERIES, ZA COMPACT VACUUM EJECTOR, BG, ZA NOZZLE SIZE 0.5, .37764 lb
Vacuum ejector series ZA is compact and lightweight, making it ideal for pick and place operations, and suitable to all industries.? Due to the compact design of the ZA, it is possible to install on moving parts.? The shortened tube length to pad improves response time.? The ZA is available as a single unit or manifold type, with or without pressure sensors?and suction filters.? Compact
Vacuum ejector series ZA is compact and lightweight, making it ideal for pick and place operations, and suitable to all industries. Due to the compact design of the ZA, it is possible to install on moving parts. The shortened tube length to pad improves response time. The ZA is available as a single unit or manifold type, with or without pressure sensors and suction filters. Compact
This is a legacy product. Please contact us for the latest version.sales@ocaire.com, VACUUM EJECTOR, COMPACT, VACUUM SERIES, ZA COMPACT VACUUM EJECTOR, BG, ZA NOZZLE SIZE 0.5, .29625 lb
Nozzle Diameter: ø1.0, Exhaust: Silencer for Single Unit, Solenoid Valve Combination: Supply Valve: N.C.; Vacuum Release Valve: N.C., Voltage: 12VDC, Electrical Entry: L Plug Connector, Lead Wire Length 0.3m, Light & Surge Suppressor, Manual Override: Non-locking Push Style; Latching: Push Lock Type, Vacuum Pressure Switch Suction Filter: Suction Filter Only, Vacuum Pressure Switch Unit Specs
Main Body Shape: Unit, Additional Function: Silencers / Filter / Vacuum Destructive Valve, Ultimate Vacuum(kPa): -90, Air Consumption Flow Rate(l/min): 10, Vacuum Port Connecting Port Shape: One-Touch Couplings, Vacuum Port One-Touch Fitting Size: 5/32 (Ø3.97), Air Supply Port Connecting Shape: M5, Application: Individual Item, Performance: Large Flow Rate Type, Operating Temperature Range
Main Body Shape: Unit, Additional Function: Silencers / Filter / Vacuum Destructive Valve, Ultimate Vacuum(kPa): -90, Air Consumption Flow Rate(l/min): 18, Vacuum Port Connecting Port Shape: One-Touch Couplings, Vacuum Port One-Touch Fitting Size: 1/8 (Ø3.18), Air Supply Port Connecting Shape: M5, Application: Individual Item, Performance: Large Flow Rate Type, Operating Temperature Range
Nozzle Diameter: ø0.7, Exhaust: 2 [Port Exhaust Rc(PT) 1/8], Valve: Supply Valve: Solenoid (NC)/Release Valve: Solenoid (NC), Voltage: 12VDC, Electrical Entry: L Plug Lead Wire: 0.3m, Surge Suppressor: None, Manual Override: Non-locking Push Style (Or None if Air Operated or No Valve), Switch: Vacuum Switch, NPN, Lead Wire: Connector Lead Wire Length 0.6m, Mounting Style: -
Exhaust: Built-in Silencer, Exhaust Port Thread: Rc1/2 (or No EXH Thread in the Case of Built-in Silencer), Supply, Release Valve: w/Supply & Release Valves, Voltage: 12VDC, Electrical Entry: L Plug Connector, Lead Wire Length 0.3m, Light & Surge Suppressor: None, Manual Override: Non-locking Push Type, Vacuum Pressure Sensor: Vacuum Pressure Gauge, Output Specification: -, Unit Specification
CL Ek: Kinetic energy of load (J) m: Load weight (kg) : Piston speed (m/s) (Average speed x 1.2 times) Ek = m2 1 2 CL1 3. The piston speed will exceed the average speed immediately before locking. To determine the piston speed for the purpose of obtaining the kinetic energy of load, use 1.2 times the average speed as a guide. 4.