MXS 50 50 50 40 40 40 80 80 80 100 100 63 63 63 MXQ Load weight m(kg) Load weight m(kg) 50 50 50 40 40 40 50 40 30 50 40 30 MXF 20 20 [Example] MXW 10 10 MXP 5 4 3 5 4 3 MG 2 2 1 100 200 300 400 500 1000 1 100 200 300 400 500 1000 MGP Max. speed V(mm/s) Max. speed V(mm/s) MGQ Graph m Graph v 0.5MPa P 0.5MPa P MGG 1000 1000 100 100 100 80 80 80 MGC 500 400 300 500 400 300 63 63 63
Specifications Model PSE561 (Vacuum) PSE560 (Positive pressure) PSE563 (Compound pressure) PSE564 (Positive pressure) Rated pressure range 0 to 1 MPa 0 to 101 kPa 100 to 100 kPa 0 to 500 kPa Extension analog output range 0.1 to 0 MPa 10.1 to 0 kPa 50 to 0 kPa Proof pressure 1.5 MPa 500 kPa 500 kPa 750 kPa Model PSE56--28 PSE56Applicable fluid Liquid or gas that will not corrode stainless
Cylinder Speed Chart Bore size Series CM Pressure 0.5 MPa Load factor 50% Stroke 300 mm Series MB/CA1 Note) Pressure 0.5 MPa Load factor 50% Stroke 500 mm Series CS1 Pressure 0.5 MPa Load factor 50% Stroke 1000 mm 20 25 32 40 40 50 63 80 100 125 140 160 Average speed (mm/s) System 800 700 600 500 400 300 200 100 Perpendicular, upward actuation A Horizontal actuation VK VZ 0 800 700 600 500
500 100 300 500 Cylinder speed [mm/s] Cylinder speed [mm/s] Cylinder speed [mm/s] Refer to pages 9 to 12 for detailed conditions regarding the above cylinder speeds.
4 250 20 70 15 330 216.3 230 490 660 965 80 120 25 (1B) 40 (1 1/2B) 50 (2B) 20 (3/4B) 20 (3/4B) 500 4 500 20 80 24 330 216.3 230 490 905 1220 80 120 25 (1B) 40 (1 1/2B) 50 (2B) 20 (3/4B) 20 (3/4B) 500 4 750 20 90 32 330 216.3 230 490 1160 1485 80 120 25 (1B) 40 (1 1/2B) 50 (2B) 20 (3/4B) 20 (3/4B) 500 4 1000 20 105 41 330 216.3 230 490 1415 1750 80 120 25 (1B) 40 (1 1/2B) 50 (2B) 25 (1B)
NFPA (Fluid) T2.24.1 R1: Hydraulic fluid power Systems standard for stationary industrial machinery. NFPA 79: Electrical Standard for Industrial Machinery. ANSI / RIA / ISO 10218 -1: Robots for Industrial Environment Safety Requirements Part 1 Robot. etc. Caution indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.
pressure Vacuum pressure 700 700 Suction flow rate (Branch/Port exhaust) Suction flow rate (Branch/Port exhaust) Vacuum pressure [kPa] Vacuum pressure [kPa] 600 600 Suction flow rate (Silencer exhaust) Suction flow rate (Silencer exhaust) 500 500 400 400 Air consumption 300 300 Air consumption 200 200 100 100 0 0 Supply pressure [MPa] Supply pressure [MPa] Flow Rate Characteristics (Representative
Rod Boot Material Stopping Accuracy Unit: mm Piston speed (mm/s) 100 0.3 300 0.6 500 1.0 1000 2.0 Symbol Max. operating temp.
IS 0 1 MPa PSE560 100 kPa (0.1 MPa) 1 MPa ZSM For positive pressure 0 500 kPa PF2 PSE564 50 kPa 500 kPa IF Rated pressure range of sensor Regulating pressure range of controller Data 16-3-31
160, 200, 250, 320, 400, 500 2900 125 25, 50, 80, 100, 125, 160, 200, 250, 320, 400, 500 CA1 2900 160 25, 50, 80, 100, 125, 160, 200, 250, 320, 400, 500 Intermediate strokes are available.
100 0.5 500 400 300 200 1000 1000 Maximum speed: V(mm/s) Maximum speed: V(mm/s) Graph 6 Graph 3 0.4MPaP<0.5MPa 0.4MPaP<0.5MPa 200 200 100 100 40 32 30 40 50 30 40 50 25 40 20 32 Load weight: m (kg) Load weight: m (kg) 20 20 [Example] 25 10 10 20 5 4 5 4 3 3 2 2 1 1 0.5 0.5 100 500 400 300 200 100 500 400 300 200 1000 1000 Maximum speed: V(mm/s) Maximum speed: V (mm/s) Graph 7 Graph 4 0.5MPaP
A1 L1 R1 U1 NDH10 U(H8) E1 MM NX Applicable bore size (mm) Applicable bore size (mm) I-02 I-03 I-04 IA-04 Part no.
Bore (mm) Standard stroke (mm) Nylon tarpaulin 60C 110C Neo plain cloth 25, 50, 75, 100, 125, 150, 175, 200, 250, MG 40 Maximum ambient temperature for the rod boot itself. 300, 350, 400, 450, 500 25, 50, 75, 100, 125, 150, 175, 200, 250, MGP 50, 63 300, 350, 400, 450, 500, 600 25, 50, 75, 100, 125, 150, 175, 200, 250, MGQ 80, 100 300, 350, 400, 450, 500, 600, 700 MGG Minimum stroke of
Standard stroke (mm) 60C Nylon tarpaulin 110C Neo plain cloth MXQ 25, 50, 75, 100, 125, 150, 175, 200, 250, 40 Maximum ambient temperature for the rod boot itse 300, 350, 400, 450, 500 MXF 25, 50, 75, 100, 125, 150, 175, 200, 250, 50, 63 300, 350, 400, 450, 500, 600 MXW 25, 50, 75, 100, 125, 150, 175, 200, 250, 80, 100 300, 350, 400, 450, 500, 600, 700 MXP Minimum stroke of auto switch
to 51) (50 to 26) value ISA3-H X+150 X+100 X+50 X (50 to 0) 50 (200 to 151) (150 to 101) (100 to 51) ISA3-F ISA3-G X+750 Process X+500 X+250 X (250 to 0) 250 (1000 to 751) (750 to 501) (500 to 251) data ISA3-H : The value in the brackets in level 2 shows the boundary value. -66No.PS-OMW0009-C 4 How to use X: Switch point is divided by weight.
Material: Free cutting sulfur steel Applicable bore size (mm) 40 50, 63 80 100 A A1 R1 U1 E1 L1 MM NX NDH10 Part no.
0.310 7.88 4.22 107.1 X578 2 kPa 2.10 -1998 to 2100 21.0 0.305 0.620 15.8 8.43 214 X579 5 kPa 5.25 52.5 0.761 1.55 39.4 21.1 535 X580 10 kPa 10.50 105.0 1.52 31.0 78.8 42.2 1071 -: No units for display Analogue output Voltage output Current output Range Rated pressure range A B C X576 500 Pa -500 Pa 0 Pa 500 Pa X577 1 kPa -1 kPa 0 kPa 1 kPa X578 2 kPa -2 kPa 0 kPa 2 kPa X579 5 kPa -5 kPa
325 775 1153 93 445 123 5 279 46 50 13 353 85 600 379 1258 64 550 135 0 290 388 680 414 IDU37E R11/2 360 855 IDU55E R2 470 1345 53 530 1440 360 30 500 75 700 526 IDU75E 1480 1575 70 IDU Series 6-3 External Dimentions 6 3 IDX-OM-W028 Air Dryer 6 References 6-4 Electrical Circuit IDU22E-23 IDU37E-23 GFCI For Option R GFCI For Option R L N PE L N PE TB TB THR MC1 OLP THR MC1 C01 OLP CM C01
Calculate the moment of inertia of attachment. z r1 Material of attachment: Aluminum alloy (Specific gravity = 2.7) A part z1 r1 = 37 (mm) Calculation of weight m1 = a x b x c x Specific gravity m1 = 40 x 7 x 8 x 2.7 x 10-6 = 0.006 (kg) Moment of inertia around Z1 axis IZ1 = {m1(a2 + b2)/12} x 10-6 Iz1 = {0.006 x (402 + 72)/12} x 10-6 = 0.8 x 10-6 (kgm2) IA = 0.8 x 10-6 + 0.006 x 372 x 10
Proper tightening torque Nm Connection thread size 7 to 9 NPT 1/16, NPT, R1/8 12 to 14 NPT, R1/4 22 to 24 NPT, R3/8 28 to 30 NPT, R1/2 2. When a fitting is over tightened, more of the sealant material is squeezed out. Remove the squeezed out sealant material. 3. When tightening is not sufficient, it will cause sealant failure or a loose fitting. 4.