SMC Corporation of America
Elite Part Number Search
Search Results "ZA1071-K16M-FB-M2"

Description Note M2: 0.17 Nm M3: 0.8 Nm M4: 1.4 Nm 1 4 3 8 SY5000-27-1 Rc: SY7000-27-1 Rc: SY7000-27-2 SY3000-27-1 Sub-plate Aluminum die-casted i Gasket o HNBR SY5000-11-15 SY7000-11-11 SY3000-11-25 Round head combination screw For valve mounting (Matt nickel plated) M3 x 30 M4 x 35 SX3000-22-2 (M2 x 24) 1-6-31 Base Mounted Series SX3000/5000/7000 Dimensions: Series SX5000 2 position single

Description Note M2: 0.17 Nm M3: 0.8 Nm M4: 1.4 Nm 1 4 3 8 SY5000-27-1 Rc: SY7000-27-1 Rc: SY7000-27-2 SY3000-27-1 Sub-plate Aluminum die-casted i Gasket o HNBR SY5000-11-15 SY7000-11-11 SY3000-11-25 Round head combination screw For valve mounting (Matt nickel plated) M3 x 30 M4 x 35 SX3000-22-2 (M2 x 24) 1-6-31 Base Mounted Series SX3000/5000/7000 Dimensions: Series SX3000 2 position single

M2 M2 L2 L2 Plug-in Reducer: KQG2R D Applicable tube O.D.

M2 M2 L2 L2 Plug-in Reducer: KQB2R Applicable tube O.D.

Dimensions 2 x M2 x 3 (Countersunk head Phillips screw for precision equipment) 2 x M2 x 3 (Round head Phillips screw for precision equipment) 2 x M2 x 3 (Round head Phillips screw for precision equipment) 2 x M3 x 8 (Bolt with hex. hole) 2 x M2 x 5 (Bolt with hex. hole) 2 x M2.5 x 6 (Bolt with hex. hole) MXP10, 12, 16 MXP8 MXP6 Applicable size Note Switch rail part no.

Static moment M2 = m g (L1 + B) 103 m x g = 1 9.8 (50 + 48) 103 Review M2. Since M1 and M3 are not generated, review is unnecessary. = 0.96 [Nm] 2 = M2/M2 max = 0.96/4 = 0.24 M Guide shaft mounting surface L1 B We = 5 x 103m g U = 5 x 103 1 9.8 300 = 14.7 [N] Me3 = 1/3 We(L2 + A) 103 3.

L1 M2 = m g (L1 + B) 103 2. Static moment m x g = 1 9.8 (50 + 48) 103 Review M2. Since M1 & M3 are not generated, review is unnecessary. = 0.96 [Nm] 2 = M2/M2 max = 0.96/4 = 0.24 M Guide shaft mounting surface L1 B We = 5 x 103 m g U = 5 x 103 1 9.8 300 = 14.7 [N] Me3 = 1/3 We (L2 + A) 103 3.

Static moment M2 = m g (L1 + B) 103 m x g = 1 9.8 (50 + 48) 103 Review M2. Since M1 & M3 are not generated, review is unnecessary. = 0.96 [Nm] 2 = M2/M2 max = 0.96/4 = 0.24 M Guide shaft mounting surface L1 B We = 5 x 103 m g U = 5 x 103 1 9.8 300 = 14.7 [N] Me3 = 1/3 We (L2 + A) 103 3.

Static moment M2 = m g (L1 + B) 103 m x g = 1 9.8 (50 + 48) 103 Review M2. Since M1 & M3 are not generated, review is unnecessary. = 0.96 [Nm] 2 = M2/M2 max = 0.96/4 = 0.24 M Guide shaft mounting surface L1 B We = 5 x 103 m g U = 5 x 103 1 9.8 300 = 14.7 [N] Me3 = 1/3 We (L2 + A) 103 3.

L1 M2 = m g (L1 + B) 103 2. Static moment m x g = 1 9.8 (50 + 48) 103 Review M2. Since M1 & M3 are not generated, review is unnecessary. = 0.96 [Nm] 2 = M2/M2 max = 0.96/4 = 0.24 M Guide shaft mounting surface L1 B We = 5 x 103 m g U = 5 x 103 1 9.8 300 = 14.7 [N] Me3 = 1/3 We (L2 + A) 103 3.

(mm) a b Effective area (mm2) Weight (g) D L M2 Model 3.2 4 KJH02-23 KJH02-04 8.4 9.3 26.6 26.6 8.8 8.8 12.7 12.7 0.9 0.9 2.4 3.2 2 M1 M2 D D L Applicable tubing a Applicable tubing b Male elbow: KJL T H A Applicable tubing O.D.

Static moment M2 = m g (L1 + B) 103 m x g = 1 9.8 (50 + 48) 103 Review M2. Since M1 and M3 are not generated, review is unnecessary. = 0.96 [Nm] 2 = M2/M2 max = 0.96/4 = 0.24 M Guide shaft mounting surface L1 B We = 5 x 103m g U = 5 x 103 1 9.8 300 = 14.7 [N] Me3 = 1/3 We(L2 + A) 103 3.

Static moment M2 = m g (L1 + B) 103 m x g = 1 9.8 (50 + 48) 103 Review M2. Since M1 and M3 are not generated, review is unnecessary. = 0.96 [Nm] 2 = M2/M2 max = 0.96/4 = 0.24 M Guide shaft mounting surface L1 B We = 5 x 103m g U = 5 x 103 1 9.8 300 = 14.7 [N] Me3 = 1/3 We(L2 + A) 103 3.

L1 M2 = m g (L1 + B) 103 2. Static moment m x g = 1 9.8 (50 + 48) 103 Review M2. Since M1 & M3 are not generated, review is unnecessary. = 0.96 [Nm] 2 = M2/M2 max = 0.96/4 = 0.24 M Guide shaft mounting surface L1 B We = 5 x 103 m g U = 5 x 103 1 9.8 300 = 14.7 [N] Me3 = 1/3 We (L2 + A) 103 3.

Static moment M2 = m g (L1 + B) 103 m x g = 1 9.8 (50 + 48) 103 Review M2. Since M1 and M3 are not generated, review is unnecessary. = 0.96 [Nm] 2 = M2/M2 max = 0.96/4 = 0.24 M Guide shaft mounting surface L1 B We = 5 x 103m g U = 5 x 103 1 9.8 300 = 14.7 [N] Me3 = 1/3 We(L2 + A) 103 3.

MHCM2-7S D8.3 205.2 2-M2 x 0.4 thread (Mounting thread) 2-M2 x 0.4 depth 4 (Mounting thread) 2.5 2 1.5 When open 20 When closed 7 10 6 4.5 15 11 7.7 1.8 16.5 6 100.05 (23) M3 x 0.5 (Finger closing port) 2-M2 x 0.4 thread (Attachment mounting thread) 4 0 0.03 3 12-8-23

MHCM2-7S D8.3 205.2 2-M2 x 0.4 thread (Mounting thread) 2-M2 x 0.4 depth 4 (Mounting thread) 2.5 2 1.5 When open 20 When closed 7 10 6 4.5 15 11 7.7 1.8 16.5 6 100.05 (23) M3 x 0.5 (Finger closing port) 2-M2 x 0.4 thread (Attachment mounting thread) 4 0 0.03 3 12-8-23

Max. system pressure (MPa) Av x 10-6 m2 Cv converted Max. operating pressure differential (MPa) Weight (g) Max. operating pressure differential (MPa) Max. system pressure (MPa) Flow characteristics Flow characteristics Orifice size (mm) Model AC Orifice size (mm) Model AC Note) Note) Port size Port size Weight (g) Av x 10-6 m2 Cv converted VXK2112-01 VXK2122-01 VXK2132-01 VXK2112-02 VXK2122

Value is different from Kv and Cv factors for pneumatic purpose due to different test method. 3 3 Water flow rate Q0 [L/min] (When Av = 1 x 106 [m2]) Saturated steam flow rate Q0 [kg/h] (when Av = 1 x 106 [m2]) 2 Upstream pressure P1 = 1 MPa 2 P1 = 0.8 MPa 1 0.9 0.8 0.7 0.6 1 0.9 0.8 0.7 0.6 P1 = 0.6 MPa Example 2 P1 = 0.5 MPa P1 = 0.4 MPa 0.5 0.5 0.4 0.4 Example 1 P1 = 0.3 MPa 0.3 0.3 P1

= d x e x f x Relative density m2 = 4 x 5 + 6 x 2.7 x 10-6 = 3.24 x 10-4 (kg) Inertial moment around Z2 axis IZ2 = {m2 (d2 x e2) / 12} x 10-6 IZ2 = {3.24 x 10-4 x (42 + 52) / 12} x 10-6 = 1.11 x 10-9 (kg.m2) = 1.11 x 10-9 + 3.24 x 10-4 x 23.52 x 10-6 = 0.18 x 10-6 (kg.m2) Inertial moment around Z axis IB = IZ2 x m2r22 x 10-6 IB Thus, the total inertial moment is I = IA x B I = 0.20 x 10