Calculate (1) (Wmax) from the graph of max. payload (W1, W2, W3) and calculate (2) and (3) (Mmax) from the maximum allowable moment graph (M1, M2, M3).
Nm N M1 M M3 W W2 W W4 ML2B25 10.0 1.2 3.0 200.0 58.0 65.0 100.0 ML2B32 20.0 2.4 6.0 300.0 80.0 96.0 150.0 ML2B40 40.0 4.8 12.0 500.0 106.0 140.0 250.0 ML2B25 ML2B32 ML2B40 J 0.43 0.68 1.21 18 ML2B/M1 ML2B/W1 ML2B/W1 0 0 0 Nm 0 0 0 N N 0 m/s m/s m/s ML2B/M2 ML2B/W2 ML2B/W2 N m N N m/s ML2B/M3 m/s m/s 20 ML2B/W3 ML2B/W3 10 Nm 5 3 2 1 N N m/s m/s m/s ML2B/W4 500 N 00 N
105 130 150 190 212 236 30 35 35 40 40 50 50 56 59 67 73 77 85 69 78 84 92 100 44 52 64 78 92 115 128 144 16 20 20 25 30 36 36 40 42 50 59 76 92 100 112 118 27 32 32 37 37 47 47 53 40 50 55 65 80 90 90 90 60 70 86 102 116 145 161 182 32 40 40 52 52 59 59 59 43 43 43 9.0 9.0 11.5 13.5 13.5 19 19 19 112.5 121 133 141.5 150 167 Bore (mm) W/o rod boot W/ rod boot KA N H1 K MM GA FV J W M S M1
(Mounting position: Horizontal) W 1000 500 400 Allowable lateral load W (N) 300 Allowable kinetic energy 200 Piston speed 200 180 200 100 180 Piston speed Allowable kinetic energy 20 to 400mm/s 12.4J 50 40 30 (m1 + m2) V Kinetic energy E (J) = 2 m1: Weight of moving cylinder parts kg m2: Load weight kg V: Piston speed m/s 20 10 0 20 40 60 80 100 120 140 160 180 200 220 260 240 280 300 Kinetic
Cylinder (including thin round plate) Position of rotational axis: Through the plate's central axis Position of rotational axis: Perpendicular to the shaft anywhere along its length I = m1 x + m2 x 3 a1 3 a2 I = m x 2 r 2. Thin shaft Position of rotational axis: Through the shaft's center of gravity 7.
(=M3) M2 M3 M1 M2 1.25 1.68 Slide 12 3 0.53 0.70 Ball bushing 3.34 4.25 Slide 16 7 1.53 2.11 Ball bushing 11.4 17.1 Slide l l 20 12 5.60 7.28 Ball bushing Note) For the purpose of calculating the moment, the length of the arm is the distance that is measured from the guide shaft center ( mark).
5 15-17-5 6 Series AS-FPQ/FPG Dimensions H (width across flats) Applicable tubing O.D. d A L4 D1 L3 D2 M1 L1 L2 T M5 type H (width across flats) Applicable tubing O.D. d A A4 D1 L3 D2 M1 L1 T L2 Model Weight (g) Note 2) Tubing O.D. d T H D1 D2 L1 L2 L3 M1 L4 Max. Min. Max. 1 2 Min.
MK/MK2 RSQ/RSG RSH CE1 CE2 ML2B ML1C REA Calculation for Moment of Inertia I: Moment of Inertia (kgm2) m: Load weight (kg) REC qThin bar Position of rotary axis: Vertical to the bar and through the end rThin rectangular plate Position of rotary axis: Vertical to the plate and through the end RHC a22 3 I = m1 + m2 4a12+b2 12 4a22+b2 12 I = m1 + m2 a12 3 MTS CC wThin bar Position of rotary
Position of rotation axis: Parallel to side b and passes a center of gravity. 1=m 12 a 2 1=m 4 r 2 oWith a load at the lever end rThin rectangle board (Parallelogram) Position of rotation axis: Perpendicular to the board and passes through center line. 2 1 2 2 a +K 1=m1 +m2 3 a Ex.)
L1 L2 T M5 type H (width across flats) Applicable tubing O.D. d A A4 D1 L3 D2 M1 L1 T L2 Model Weight (g) Note 2) Tubing O.D. d T H D1 D2 L1 L2 L3 M1 L4 Max.
0Gear transmission oLoad at lever end Number of teeth = a = m1 a12 1. Find the inertial moment B for the rotation of shaft (B). 3 + m2 a22 + K (Example) When shape of m2 is a sphere, refer to 7, and K = m2 2r2 2.
(mm) 4 KCH04-00 KCH06-00 KCH08-00 KCH10-00 KCH12-00 Effective area (mm2) Nylon Urethane 2.6 6.8 16.2 25.6 35.4 Note) 2-applicable tubing Weight (g) Model D L M1 M2 10.4 12.8 15.2 18.5 20.9 42.1 45.8 52.8 59.8 63.5 18 19 21.5 24 25.5 16 17 18.5 21 22 2.6 6.8 13.1 20.4 30.4 5 7 10 18 24 Note) D: Max. diameter 6 8 10 12 Straight Plug for Frequent Use: KCH Applicable tubing O.D.
Compatible Motors Applicable motor model Size/Motor type 25 32/40 NZ Mounting type Z NY Mounting type Y NX Mounting type X NM1 Mounting type M1 NM2 Mounting type M2 NZ Mounting type Z NY Mounting type Y NX Mounting type X NW Mounting type W NV Mounting type V NU Mounting type U NT Mounting type T NM1 Mounting type M1 NM2 Mounting type M2 Manufacturer Series Type MELSERVO-JN HF-KN Mitsubishi
(mm) Model H Bracket mounting dimensions Q Weight (g) 1(P) R 2(A) 2(A) R 3(R)* L3 L4 L5 L6 M1 M2 L1 L2 Bracket assembly no.
Obtain the moment of inertia of load 1: 2 r12 )1 = m1 Load 1: )1 Load 2: )2 2. Obtain the moment of inertia of load 2. 2 r22 )2 = m2 + m2L 2 3.
SJ3000 P 00 SJ3000-01-P(-H) SJ3000-M1-P(-H) SJ3000-00-P(-H) With manual operation of pressure adjustment screw Option 00 01 M1 Pressure gauge, top mounting Pressure gauge, side mounting Without pressure gauge Regulating port P port P Pressure adjustment screw operation Slotted locking type Manual Nil H Pressure gauge, side mounting Without pressure gauge Pressure gauge, top mounting Note)
Cylinder (including thin round plate) Position of rotational axis: Through the plate's central axis Position of rotational axis: Perpendicular to the shaft anywhere along its length I = m1 x + m2 x 3 a1 3 a2 I = m x 2 r 2. Thin shaft Position of rotational axis: Through the shaft's center of gravity 7.
L1 L2 T M5 type H (width across flats) Applicable tubing O.D. d A A4 D1 L3 D2 M1 L1 T L2 Model Weight (g) Note 2) Tubing O.D. d T H D1 D2 L1 L2 L3 M1 L4 Max.
D1 Port B min. port size Weight (g) D2 L1 L2 L3 L4 P Q1 Q2 M1 M2 4 4 6 KM16-06-06-3 12.8 4 6 KM16-04-04-3 16 17 17 KM16-04-06-3 6 16 16 17 19 18 3 4.5 18 4.5 12.8 68 20.9 16 11 14.5 50 10.5 65
W: Work load (N) L1, L2, L3: Amount of overhang to work piece center of gravity (mm) a: Table acceleration (mm/s) Mounting position Direction of load movement Model LJ1H10 LJ1H20 LJ1H30 Horizontal/Lateral Horizontal/Lateral Vertical Lateral Horizontal a M1 2000 a=1000 a=1000 2000 2000 a=1000 L1 mm L1 mm L1 mm Pitching W a=2000 a=2000 a=3000 a=3000 a=2000 1000 1000 1000 L1 a=3000 0 2 4 6 8