SMC Corporation of America
Elite Part Number Search
Search Results "ZA1071-Q15L-FP1A-M2"

Body A 1 Brass Electroless nickel plated Body B 2 Brass Electroless nickel plated Valve 3 Aluminum O-ring 4 HNBR Spring 5 Stainless steel Pad side Element 6 BC ZP2V-AZP2V-BGasket 7 NBR + Stainless steel 63 Series ZP2V Vacuum Saving Valve Dimensions Vacuum generator side Vacuum generator side M2 M2 H1 H1 Vacuum generator side L2 L1 L3 L2 M2 H1 L2 L33 (L4) (L4) No.0.8 No.0.8 L1 L3 L2 L3

(Moment of inertia) 2 = m2 + m2 L2 D2 8 4.6 x 104 (Calculation example) Cylinder bore size 32 A = 0.07 m, B = 0.02 m, S = 0.012 m, L = 0.045 m, D = 0.02 m m1 = 0.16 kg, m2 = 0.15 kg 1 = 0.16 x + 0.16 x = 1.6 x 104 kgm2 0.012 0.072 + 0.022 2 0.07 2 1.0 x 104 12 120 200 10 100 1000 2 = 0.15 x + 0.15 x 0.0452 = 3.0 x 104 kgm2 0.022 Maximum piston speed [mm/s] 8 Calculation Example (32, clamp

(Fig. 3) Bracket part number for single unit: ZB1-BK1-A Two mounting screws (M2 x 0.55 inch (14 mm), with washer) and two M2 nuts are included. Recommended fittings: KJH04-M5, KJL04-M5, KJW04-M5 Manifold Caution 1.

In the case of liquid: P Q = 1.9 x 106Av (9) G Q : Flow rate [l/min] Av : Flow coefficient [m2] P : Pressure difference [MPa] G : Relative density [water = 1] In the case of saturated aqueous vapor: Q = 8.3 x 106Av P(P2 + 0.1) (10) Q : Flow rate [m3/s] Av : Flow coefficient [m2] P : Pressure difference [Pa] P1 : Relative density [MPa]: P = P1 P2 P2 : Relative density [MPa] Front matter 4

Value is different from Kv and Cv factors for pneumatic purpose due to different test method. 3 3 Saturated steam flow rate Q0 [kg/h] (when Av = 1 x 106 [m2]) Water flow rate Q0 [L/min] (when Av = 1 x 106 [m2]) 2 Upstream pressure P1 = 1 MPa 2 P1 = 0.8 MPa 1 0.9 0.8 0.7 0.6 1 0.9 0.8 0.7 0.6 P1 = 0.6 MPa Example 2 P1 = 0.5 MPa P1 = 0.4 MPa 0.5 0.5 0.4 0.4 P1 = 0.3 MPa Example 1 0.3 0.3 P1

Values of pneumatic Kv are different from Cv because the testing method is different from each other. 3 3 2 2 Upstream pressure Saturated aqueous vapor flow rate Q0 [kg/h] (when Av = 1 x 106 [m2]) P1 = 1 MPa Water flow rate Q0 [l /min] (When < when Av = 1 x 106 [m2]) P1 = 0.8 MPa 1 0.9 0.8 0.7 0.6 1 0.9 0.8 0.7 0.6 P1 = 0.6 MPa Ex. 2 P1 = 0.5 MPa P1 = 0.4 MPa 0.5 0.5 0.4 0.4 P1 = 0.3 MPa

Body A 1 Brass Electroless nickel plated Body B 2 Brass Electroless nickel plated Valve 3 Aluminum O-ring 4 HNBR Spring 5 Stainless steel Pad side Element 6 BC ZP2V-AZP2V-BGasket 7 NBR + Stainless steel 63 Series ZP2V Vacuum Saving Valve Dimensions Vacuum generator side Vacuum generator side M2 M2 H1 H1 Vacuum generator side L2 L1 L3 L2 M2 H1 L2 L33 (L4) (L4) No.0.8 No.0.8 L1 L3 L2 L3

Body A 1 Brass Electroless nickel plated Body B 2 Brass Electroless nickel plated Valve 3 Aluminum O-ring 4 HNBR Spring 5 Stainless steel Pad side Element 6 BC ZP2V-AZP2V-BGasket 7 NBR + Stainless steel 63 Series ZP2V Vacuum Saving Valve Dimensions Vacuum generator side Vacuum generator side M2 M2 H1 H1 Vacuum generator side L2 L1 L3 L2 M2 H1 L2 L33 (L4) (L4) No.0.8 No.0.8 L1 L3 L2 L3

In the case of liquid: P Q = 1.9 x 106Av (9) G Q : Flow rate [l/min] Av : Flow coefficient [m2] P : Pressure difference [MPa] G : Relative density [water = 1] In the case of saturated aqueous vapor: Q = 8.3 x 106Av P(P2 + 0.1) (10) Q : Flow rate [m3/s] Av : Flow coefficient [m2] P : Pressure difference [Pa] P1 : Relative density [MPa]: P = P1 P2 P2 : Relative density [MPa] Front matter

Range Setting Enabled Section Setup M2*10 Option Field Allocation 3 0 to 2 1F1E After restart 1F1F Pn82C Setup M2*10 Option Field Allocation 4 0 to 2 0 After restart 1F1C Pn82D Setup M2*10 Option Field Allocation 5 0 to 2 0 After restart 1D1F Pn82E 10.

In the case of liquid: P Q = 1.9 x 106Av (9) G Q : Flow rate [l/min] Av : Flow coefficient [m2] P : Pressure difference [MPa] G : Relative density [water = 1] In the case of saturated aqueous vapor: Q = 8.3 x 106Av P(P2 + 0.1) (10) Q : Flow rate [m3/s] Av : Flow coefficient [m2] P : Pressure difference [Pa] P1 : Relative density [MPa]: P = P1 P2 P2 : Relative density [MPa] Front matter 4

In the case of liquids: DP Q = 1.9 x 106Av (9) G Q : Flow rate [L/min] Av : Flow coefficient [m2] DP : Pressure difference [MPa] G : Relative density [water = 1] In the case of saturated aqueous vapor: Q = 8.3 x 106Av DP(P2 + 0.1) (10) Q : Flow rate [kg/h] Av : Flow coefficient [m2] DP : Pressure difference [MPa] P1 : Upstream pressure [MPa]: DP = P1 P2 P2 : Downstream pressure [MPa] 11

No.0.8 L1 L3 L2 L3 (L4) No.0.8 H 2 H 2 H 2 L1 M1 M1 M1 D Pad side Pad side Pad side ZP2V-A01ZP2V-AN1ZP2V-AG1ZP2V-A5ZP2V-A8Vacuum generator side D Vacuum generator side M2 M2 L3 L2 H 1 Vacuum generator side L2 L3 3 H 1 M2 H 1 (L4) (L4) No.0.8 No.0.8 (L4) No.0.8 H 2 H 2 L1 L1 L1 H 2 M1 M1 M1 Pad side Pad side Pad side ZP2V-B01ZP2V-BN1ZP2V-BG1ZP2V-B5ZP2V-B61 The place at the vacuum generator

Body A 1 Brass Electroless nickel plated Body B 2 Brass Electroless nickel plated Valve 3 Aluminum O-ring 4 HNBR Spring 5 Stainless steel Pad side Element 6 BC ZP2V-AZP2V-BGasket 7 NBR + Stainless steel 63 Series ZP2V Vacuum Saving Valve Dimensions Vacuum generator side Vacuum generator side M2 M2 H1 H1 Vacuum generator side L2 L1 L3 L2 M2 H1 L2 L33 (L4) (L4) No.0.8 No.0.8 L1 L3 L2 L3

Body A 1 Brass Electroless nickel plated Body B 2 Brass Electroless nickel plated Valve 3 Aluminum O-ring 4 HNBR Spring 5 Stainless steel Pad side Element 6 BC ZP2V-AZP2V-BGasket 7 NBR + Stainless steel 63 Series ZP2V Vacuum Saving Valve Dimensions Vacuum generator side Vacuum generator side M2 M2 H1 H1 Vacuum generator side L2 L1 L3 L2 M2 H1 L2 L33 (L4) (L4) No.0.8 No.0.8 L1 L3 L2 L3

Body A 1 Brass Electroless nickel plated Body B 2 Brass Electroless nickel plated Valve 3 Aluminum O-ring 4 HNBR Spring 5 Stainless steel Pad side Element 6 BC ZP2V-AZP2V-BGasket 7 NBR + Stainless steel 63 Series ZP2V Vacuum Saving Valve Dimensions Vacuum generator side Vacuum generator side M2 M2 H1 H1 Vacuum generator side L2 L1 L3 L2 M2 H1 L2 L33 (L4) (L4) No.0.8 No.0.8 L1 L3 L2 L3

M1 = W1 x L1 M2 = W3 x L3 NO L3 L1 NO M1 YES The product is operatable at 14.5 mT or less magnetic field ? Is there any influence from magnetic fields ? (Refer to Caution on Handling on pages 6 and 7.) M2 W1 W3 YES NO M1 = W4 x L3 M2 = W1 x L2 NO Do not use it since it will result in a miscount. L3 L2 M1 YES Is cylinder exposed to oil, coolant, powder etc. ?

(Nm) ML2B/M1 (Pitch moment) ML2B/M2 (Roll moment) ML2B/M3 (Yaw moment) Pitch moment M1/M1e 10 20 40 Roll moment M2 1.2 2.4 4.8 Yaw moment M3/M3e 3.0 6.0 12 MI W S 40 Model 20 30 YES 20 5 4 3 10 ML2B25 ML2B32 ML2B40 CEP1 If speed or load changes, stopping time may vary and positioning accuracy may be compromised.

This is a legacy product. Please contact us for the latest version.sales@ocaire.com, VACUUM EJECTOR, COMPACT, VACUUM SERIES, ZA COMPACT VACUUM EJECTOR, BG, ZA NOZZLE SIZE 0.5, .51441 lb

Maintenance space For encoder connecter Screw size: M2 Tightening torque: .1 Nm M2 0.1Nm Reserve sufficient space for maintenance. 16. Mounting connectors For brake connecter Screw size: M2 Tightening torque: 0.2 Nm M2 0.2Nm Tighten the screws evenly. Tightening torques are as indicated below.