L1 L2+A5 L3 Kinetic Energy 2 Find the kinetic energy E (J) of the load. Find the allowable kinetic energy Ea (J).
A3 MXH W Mp Mr W MXU W My L3 A6 W L1 A2 L2 A4 MXS W Mey Mep MXQ Note) There is no need to consider this load factor in the case of using perpendicularly in a vertical position.
Do not short-circuit these terminals. [1] Main circuit power input terminals, L1, L2 and Control power input terminals, L1, L2: Connect the 200VAC external power supply to the power supply. Refer to the power supply specification for the size of the acceptable electric wire. [2] Connect the motor cable (U, V, W) to the servomotor connection terminals (U, V, W).
IDF22E-20, IDF37E-20 IDF22E-30, IDF37E-30, IDF55E-30, (Single phase AC200V) IDF75E-30 (3 phase AC200V) L N PE L1 L2 L3 PE Customer Connection Side Customer Connection Side Terminal Connecting Screw: M3 Terminal Connecting Screw: M3 Applied Pressure Terminal: 1.25-3 Applied Pressure Terminal: 1.25-3 (Width 6.5mm and below) (Width 6.5mm and below) IDF Series 1-1 Parts Name and Functions
MAKER MADE IN IDF Series i-2 i-5 IDX-OM-W026 i i-3 HFC IDF Series i-3 i6 IDX-OM-W026 i i-4 / 1 1.5 () IDF Series i-4 / i7 IDX-OM-W026 1 1 1-1 OUT IDF22E75E IN (ONOFF ) (EVAPORATING TEMP) 5-2 IDF22E-20, IDF37E-20 IDF22E-30, IDF37E-30, IDF55E-30, AC200V IDF75E-30 AC200V L N PE L1 L2 L3 PE M3 M3 1.25-3 1.25-3 (6.5mm ) (6.5mm ) IDF Series 1-1 1 1 IDX-OM-W026 1 IDF22E75E OUT
Dynamic moment Va Calculation Example m Operating conditions Cylinder: CYV32 Mounting: Horizontal wall mounting Maximum speed: U = 300 [mm/s] Load mass: m = 1 [kg] (excluding mass of the arm section) L1 = 50 [mm] L2 = 50 [mm] L2 L1 Item Load factor n Note 1. Maximum load mass m 1 = m/m max = 1/5 = 0.20 L2 Review m. L1 2.
W W Mey Mep We We L3 A3 L2 A2 Note) Static moment : Moment by gravity Kinetic moment : Moment by stopper collision Max.allowable load:W max.
When sum of load rate does not exceed 1, it is possible to use. n=1+2+3 1 < = < = 47 MXS Series Air Slide Table How To Select Allowable load: W(N) Fig.1 Overhung: Ln(mm), Correction value for moment center distance An (mm) Fig.2 Pitch moment Yaw moment Roll moment W My Mp Mr W W W Static moment Kinetic moment L1 A1 L3 A5 L2 A3 W Mp Mr My W W L3 A6 W L1 A2 L2 A4 W Mey Mep L2 A4 A2 L3 Work
Dynamic moment U: Maximum speed U Calculation examples Operating conditions Cylinder: REBH15 Mounting: Horizontal wall mounting Maximum speed: U = 500 [mm/s ] Load weight: W = 1 [kg] (excluding weight of arm section) L1 = 200 [mm] L2 = 200 [mm] W L2 L1 Item Load factor n Note 1. Maximum load weight W 1 = W/Wmax = 1/3 = 0.111 = 0.333 Review W.
L2 [mm] L2 [mm] L2 [mm] 600 600 600 Y 400 400 400 Mer m 200 200 200 0 0 0 0 5 10 15 20 25 30 35 0 10 20 30 40 50 0 10 20 30 40 50 60 70 Work load [kg] Work load [kg] Work load [kg] 1000 1000 1000 800 800 800 Mep L3 [mm] L3 [mm] L3 [mm] m 600 600 600 L3 Z 400 400 400 200 200 200 0 0 0 0 10 20 30 40 50 60 70 0 10 20 30 40 50 0 5 10 15 20 25 30 35 Work load [kg] Work load [kg] Work load [kg
Dynamic moment MG Va Calculation Example CX m Operating Conditions Cylinder: CYV32 Mounting: Horizontal wall mounting Maximum speed: U = 300 [mm/s] Load mass: m = 1 [kg] (excluding mass of the arm section) L1 = 50 [mm] L2 = 50 [mm] D-X L2 L1 20Data Item Load factor n Note 1. Maximum load mass m 1 = m/m max = 1/5 = 0.20 L2 Review m. L1 2.
L1 From V = 1.4 Va We = W V = 4/100 10 1.4 300 = 168 [N] Me3 = 1/3 We (L2 A) = 1/3 1680.032 = 1.8 [Nm] 3 = Me3/Me3 max = 1.8/7.2 = 0.250 cDynamic moment Examine Me3. Find the load equivalent to impact We. Damper coefficient = 4/100 (urethane damper) Me3 Guide central axis L2 We W A Find the value of Me3 max when V = 1.4 and Va = 420 mm/s from Graph (2). Me1 Examine Me1.
Maximum load mass m 1 = m/mmax = 1/5 = 0.20 L2 Review m. L1 M2 = m g (L1 + B) 103 2. Static moment m x g = 1 9.8 (50 + 48) 103 Review M2. Since M1 & M3 are not generated, review is unnecessary. = 0.96 [Nm] 2 = M2/M2 max = 0.96/4 = 0.24 M Guide shaft mounting surface L1 B We = 5 x 103 m g U = 5 x 103 1 9.8 300 = 14.7 [N] Me3 = 1/3 We (L2 + A) 103 3.
Maximum load mass m 1 = m/m max = 1/5 = 0.20 L2 Review m. L1 2. Static moment M2 = m g (L1 + B) 103 m x g = 1 9.8 (50 + 48) 103 Review M2. Since M1 and M3 are not generated, review is unnecessary. = 0.96 [Nm] 2 = M2/M2 max = 0.96/4 = 0.24 M Guide shaft mounting surface L1 B We = 5 x 103m g U = 5 x 103 1 9.8 300 = 14.7 [N] Me3 = 1/3 We(L2 + A) 103 3.
A3 W MX Mp Mr My MTS W W W MY L1 A2 L3 A5 W L2 A4 CY Mey Note) No need to consider this load factor in the case of using perpendicularly in a vertical position.
XMC Exterior dimensions C D L1 L2 Fn Fc C (Fc) (KF Flange) (CF Flange) J H B A G A Unit:mm Model A B C D Fn Fc G H J P.C.D L1 L2 XMC-16 40 110 38 1 30 34 17 40 26 P.C.D 27 6x4.4 XMC-25 50 120 48 1 40 26 39 28 XMC-40 65 171 66 2 55 70 41 63 36 P.C.D. 58.7 6x6.6 C D L1 L2 Fn Fd Fc C (Fc) (KF Flange) (K Flange) (CF Flange) H J K B A G A Unit:mm Model A B C D Fn Fc Fd G H J K P.C.D L1 L2 XMC-
Stations 1 2 L1 [mm]: Rail length 135.5 185.5 L2 [mm]: Mounting pitch 125 175 L3 [mm]: Manifold length 110 158 L4 [mm] 12.5 13.5 -41No.EX##-OMO0019 When only input blocks for M12 connector are connected Stations 1 2 3 4 5 6 7 8 L1 [mm]: Rail length 110.5 123 148 173 185.5 210.5 223 248 L2 [mm]: Mounting pitch 100 112.5 137.5 162.5 175 200 212.5 237.5 L3 [mm]: Manifold length 82 102 122 142
MHK2-12S 120 12 9 4 9 13 76 Normally open Normally closed MHK2-16S 16 23 6 14.6 20.6 114 DL1 MHK2-20S 20 34 10 16 26 237 L2 MHK2-25S 25 58 14 19 33 443 20MHK2-12C 12 12 4 9 13 76 MHK2-16C 16 25 6 14.6 20.6 115 MHK2-20C 20 44 10 16 26 237 MHK2-25C 25 73 14 19 33 443 Series MHKL2/Long Stroke Type Note) Width at opening (mm) L2 Width at closing (mm) L1 Effective gripping force per finger (N)
MHK2-12S 120 12 9 4 9 13 76 Normally open Normally closed MHK2-16S 16 23 6 14.6 20.6 114 DL1 MHK2-20S 20 34 10 16 26 237 L2 MHK2-25S 25 58 14 19 33 443 20MHK2-12C 12 12 4 9 13 76 MHK2-16C 16 25 6 14.6 20.6 115 MHK2-20C 20 44 10 16 26 237 MHK2-25C 25 73 14 19 33 443 Series MHKL2/Long Stroke Type Note) Width at opening (mm) L2 Width at closing (mm) L1 Effective gripping force per finger (N)