SMC Corporation of America
Elite Part Number Search
Search Results "ZA1051-K1Y5M-FP1A-M2"

Body A 1 Brass Electroless nickel plated Body B 2 Brass Electroless nickel plated Valve 3 Aluminum O-ring 4 HNBR Spring 5 Stainless steel Pad side Element 6 BC ZP2V-AZP2V-BGasket 7 NBR + Stainless steel 63 Series ZP2V Vacuum Saving Valve Dimensions Vacuum generator side Vacuum generator side M2 M2 H1 H1 Vacuum generator side L2 L1 L3 L2 M2 H1 L2 L33 (L4) (L4) No.0.8 No.0.8 L1 L3 L2 L3

Body A 1 Brass Electroless nickel plated Body B 2 Brass Electroless nickel plated Valve 3 Aluminum O-ring 4 HNBR Spring 5 Stainless steel Pad side Element 6 BC ZP2V-AZP2V-BGasket 7 NBR + Stainless steel 63 Series ZP2V Vacuum Saving Valve Dimensions Vacuum generator side Vacuum generator side M2 M2 H1 H1 Vacuum generator side L2 L1 L3 L2 M2 H1 L2 L33 (L4) (L4) No.0.8 No.0.8 L1 L3 L2 L3

In the case of liquid: P Q = 1.9 x 106Av (9) G Q : Flow rate [l/min] Av : Flow coefficient [m2] P : Pressure difference [MPa] G : Relative density [water = 1] In the case of saturated aqueous vapor: Q = 8.3 x 106Av P(P2 + 0.1) (10) Q : Flow rate [m3/s] Av : Flow coefficient [m2] P : Pressure difference [Pa] P1 : Relative density [MPa]: P = P1 P2 P2 : Relative density [MPa] Front matter

Range Setting Enabled Section Setup M2*10 Option Field Allocation 3 0 to 2 1F1E After restart 1F1F Pn82C Setup M2*10 Option Field Allocation 4 0 to 2 0 After restart 1F1C Pn82D Setup M2*10 Option Field Allocation 5 0 to 2 0 After restart 1D1F Pn82E 10.

In the case of liquid: P Q = 1.9 x 106Av (9) G Q : Flow rate [l/min] Av : Flow coefficient [m2] P : Pressure difference [MPa] G : Relative density [water = 1] In the case of saturated aqueous vapor: Q = 8.3 x 106Av P(P2 + 0.1) (10) Q : Flow rate [m3/s] Av : Flow coefficient [m2] P : Pressure difference [Pa] P1 : Relative density [MPa]: P = P1 P2 P2 : Relative density [MPa] Front matter 4

In the case of liquids: DP Q = 1.9 x 106Av (9) G Q : Flow rate [L/min] Av : Flow coefficient [m2] DP : Pressure difference [MPa] G : Relative density [water = 1] In the case of saturated aqueous vapor: Q = 8.3 x 106Av DP(P2 + 0.1) (10) Q : Flow rate [kg/h] Av : Flow coefficient [m2] DP : Pressure difference [MPa] P1 : Upstream pressure [MPa]: DP = P1 P2 P2 : Downstream pressure [MPa] 11

No.0.8 L1 L3 L2 L3 (L4) No.0.8 H 2 H 2 H 2 L1 M1 M1 M1 D Pad side Pad side Pad side ZP2V-A01ZP2V-AN1ZP2V-AG1ZP2V-A5ZP2V-A8Vacuum generator side D Vacuum generator side M2 M2 L3 L2 H 1 Vacuum generator side L2 L3 3 H 1 M2 H 1 (L4) (L4) No.0.8 No.0.8 (L4) No.0.8 H 2 H 2 L1 L1 L1 H 2 M1 M1 M1 Pad side Pad side Pad side ZP2V-B01ZP2V-BN1ZP2V-BG1ZP2V-B5ZP2V-B61 The place at the vacuum generator

Body A 1 Brass Electroless nickel plated Body B 2 Brass Electroless nickel plated Valve 3 Aluminum O-ring 4 HNBR Spring 5 Stainless steel Pad side Element 6 BC ZP2V-AZP2V-BGasket 7 NBR + Stainless steel 63 Series ZP2V Vacuum Saving Valve Dimensions Vacuum generator side Vacuum generator side M2 M2 H1 H1 Vacuum generator side L2 L1 L3 L2 M2 H1 L2 L33 (L4) (L4) No.0.8 No.0.8 L1 L3 L2 L3

Body A 1 Brass Electroless nickel plated Body B 2 Brass Electroless nickel plated Valve 3 Aluminum O-ring 4 HNBR Spring 5 Stainless steel Pad side Element 6 BC ZP2V-AZP2V-BGasket 7 NBR + Stainless steel 63 Series ZP2V Vacuum Saving Valve Dimensions Vacuum generator side Vacuum generator side M2 M2 H1 H1 Vacuum generator side L2 L1 L3 L2 M2 H1 L2 L33 (L4) (L4) No.0.8 No.0.8 L1 L3 L2 L3

Body A 1 Brass Electroless nickel plated Body B 2 Brass Electroless nickel plated Valve 3 Aluminum O-ring 4 HNBR Spring 5 Stainless steel Pad side Element 6 BC ZP2V-AZP2V-BGasket 7 NBR + Stainless steel 63 Series ZP2V Vacuum Saving Valve Dimensions Vacuum generator side Vacuum generator side M2 M2 H1 H1 Vacuum generator side L2 L1 L3 L2 M2 H1 L2 L33 (L4) (L4) No.0.8 No.0.8 L1 L3 L2 L3

M1 = W1 x L1 M2 = W3 x L3 NO L3 L1 NO M1 YES The product is operatable at 14.5 mT or less magnetic field ? Is there any influence from magnetic fields ? (Refer to Caution on Handling on pages 6 and 7.) M2 W1 W3 YES NO M1 = W4 x L3 M2 = W1 x L2 NO Do not use it since it will result in a miscount. L3 L2 M1 YES Is cylinder exposed to oil, coolant, powder etc. ?

(Nm) ML2B/M1 (Pitch moment) ML2B/M2 (Roll moment) ML2B/M3 (Yaw moment) Pitch moment M1/M1e 10 20 40 Roll moment M2 1.2 2.4 4.8 Yaw moment M3/M3e 3.0 6.0 12 MI W S 40 Model 20 30 YES 20 5 4 3 10 ML2B25 ML2B32 ML2B40 CEP1 If speed or load changes, stopping time may vary and positioning accuracy may be compromised.

Maintenance space For encoder connecter Screw size: M2 Tightening torque: .1 Nm M2 0.1Nm Reserve sufficient space for maintenance. 16. Mounting connectors For brake connecter Screw size: M2 Tightening torque: 0.2 Nm M2 0.2Nm Tighten the screws evenly. Tightening torques are as indicated below.

Bore size Hexagon socket set screw Hexagon width across flats Tightening torque (Nm) 0.176 0.176 0.63 1.5 1.5 0.9 0.9 1.5 2 2 M2 x 6 M2 x 6 M3 x 8 M4 x 8 M4 x 8 8 12 20 25 32 Retaining ring Retaining ring Cap O-ring set screw hole O-ring Cap Hexagon socket set screw 390 Series MIW/MIS Replacement Procedure of Finger/Seal 2 2-4.

Thin shaft Position of rotational axis: Perpendicular to the shaft, and attached near one end CKQ = m1 + m2 a12 3 a22 = m1 + m2 4a12 + b2 4a22 + b2 3 12 12 2. Thin shaft Position of rotational axis: Perpendicular to the shaft, and attached at the center of gravity 5.

LOAD WEIGHT (G) P R O D U C T SPECIFICATION ALLOWABLE MOMENT Model Stroke M1 M2 M3 Cp.Cy Cr MXU6 5 0.046 0.040 0.049 28.3 7.5 10 0.046 0.040 0.049 28.3 15 0.061 0.053 0.062 31.5 20 0.061 0.053 0.062 34 25 0.076 0.066 0.074 38.5 30 0.076 0.066 0.074 41 MXU10 5 0.047 0.041 0.109 28.5 9.5 10 0.047 0.041 0.109 31 15 0.080 0.069 0.169 36 20 0.080 0.069 0.169 38.5 25 0.103 0.089 0.212 44 30 0.103

Graph (3) 20 x 9.8 x (0.07 + 0.05) x 10/1000 = 0.24 20 x 9.8 x (m1 + m2) x H/1000 0.24 Nm < Effective torque OK < Effective torque (Nm) Find the moment of inertia, "IR" for the load + attachments (2 pcs.) 7 IR = K x (a2 + b2 + 12h2) x (m1 + m2)/(12 x 106) IR = 2 x (202 + 302 + 12 x 102) x (0.07 + 0.05)/(12 x 106) = 0.05 kgm2 (K = 2: Safety factor) Kinetic energy 8 Confirm that the kinetic

Output 1 Output 2 A B C Courtesy of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com Dimensions D3 D2 L5 M2 IN L3 L2 L4 OUT IN D1 M1 M1 Applicable tube dia. d L1 Metric Size Weight (g) Model d D1 D2 L3 L2 D3 L1 L4 L5 M1 M2 VR1211F-23 3.2 11.4 8.4 52 6.2 25.7 36.1 17.5 12.7 12.9

Confirm that this value is less than 1/20 of the effective torque. 20 x 9.8 x (m1 + m2) x H/1000 20 x 9.8 x (0.07 + 0.05) x 10/1000 = 0.24 < Effective torque (Nm) Graph (3) 0.24 Nm < Effective torque OK Find the moment of inertia, "IR" for the load + attachments (2 pcs.) 7 IR = K x (a2 + b2 + 12h2) x (m1 + m2)/(12 x 106) IR = 2 x (202 + 302 + 12 x 102) x (0.07 + 0.05)/(12 x 106) = 0.05 kgm2

(mm) Model L Q Weight (g) 2-applicable tubing M2 D KGL04-00 18 4 6 8 10 16 17 18.5 21 10.4 4.5 4.2 4.2 6 KGL06-00 20 12.8 5.3 11.4 9.0 6 KGL08-00 23 15.2 6 21.6 14.9 10 KGL10-00 26.5 18.2 6.8 35.2 25.0 17 KGL12-00 28.5 20.9 7.5 50.2 39.7 21 12 22 KGL16-00 34 26.5 10 100 (84) 29 16 25 K Note 1) D: Max. diameter Note 2) ( ): Values for nylon.