Load weight (kg) m1 m2 m3 Moment (Nm) M1=F1 x L1 F1 F2 M3=F3 x L3 F3 M2=F2 x L2 L1 L2 L3 Maximum load weight
Load (kg) m1 m2 m3 Moment (Nm) M3 = F3 x L3 F3 M1 = F1 x L1 F1 M2 = F2 x L2 F2 L1 L2 L3
Load mass (kg) m1 m2 Moment (Nm) m3 M3 = F3 x L3 F3 F2 M1 = F1 x L1 F1 M2 = F2 x L2 L2 L1 L3 Calculation of Guide Load Factor 1) Maximum load mass (1), static moment (2), and dynamic moment (3) (at the time of impact with stopper) must be examined for the selection calculations. To evaluate, use a (average speed) for (1) and (2), and (collision speed = 1.4a) for (3).
-X 20m2 m3 Data Moment (Nm) M1 = F1 x L1 F1 F2 M3 = F3 x L3 F3 M2 = F2 x L2 L1 L2 L3 Maximum Load Weight Select the load from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions.
10.1 6 -06H 4.7 14 12 18.4 1/8 38.6 13.2 18.5 15.7 8 -08H 16 14 22.6 6 39.7 17.6 21 22.6 10 -10H 19 17 12.8 22.3 17 10.1 6 KK4P-06H 4.7 14 12 46.2 22.6 23.0 18.5 19.8 8 -08H 6.2 16 14 25.2 1/4 35.3 27.1 21 27.6 10 -10H 7.7 19 17 47.5 30.0 40.2 -12H 9 50.9 22 12 21 19 44.4 41.2 KK6P-12H 9.2 56.1 31 1/2 106.2 25 16 50.7 -16H 13 26 25.7 Applicable tubing D Elbow type with One-touch fitting L3
Procedure Formulae/Data Selection Examples Operating conditions 1 Model to be used Type of cushion Work piece mounting position Mounting orientation Average speed Va (mm/s) Load weight W (kg) Overhang Ln (mm) Cylinder: MXQ16-50 Cushion: Rubber stopper Work piece table mounting Mounting: Horizontal wall mounting Average speed: Va = 300 [mm/s] Load weight: W = 0.2 [kg] L1 = 10mm L2 = 30mm L3
Required Gap (mm) Model L1 L2 L3 L4 L5 L6 MHM-16D 16 5 MHM-25D 36 34 1 1 1 1 MHM-32D 50 24 MHM-50D 23 25 80 41 Auto Switch Connections and Examples Sink Input Specifications Source Input Specifications Connect according to the applicable PLC input specifications, as the connection method will vary depending on the PLC input specifications. 13 - Examples of AND (Series) and OR (Parallel) Connections
LECSB1/LECSC1/LECSS1: Single phase 100 to 120 VAC, 50/60 Hz Connection terminal: L1,L2 LECSB2/LECSC2/LECSS2: Single phase 200 to 230 VAC, 50/60 Hz Connection terminal: L1,L2 Three phase 200 to 230 VAC, 50/60 Hz Connection terminal: L1,L2,L3 Do not connect. L1 Main circuit power supply L2 L2 L3 L3 N P1 P2 N Connect between P1 and P2. (Connected at time of shipping.)
7 10 96 129 97 122 9 12 97 122 12 0.032 0.059 42.5 58.2 72.3 6-10-16 6-10-16 17 Series C76 Cylinder: Standard/Non-rotating Type Double Acting, Single/Double Rod Accessory Dimensions [First angle projection] Single Knuckle Joint/DIN648 Double Knuckle Joint/DIN71751 CJ1 CJP CJ2 CM2 CG1 MB (mm) (mm) MB1 Thread e M10 x 1.5 M12 x 1.75 b 10 12 d 40 48 f 10 12 g 18 23 c 20 24 j 12 15 a 20 24 0 l3
[mm] Overhang: L3 [mm] 200 200 m L3 600 mm stroke or less 150 150 100 100 600 mm stroke 50 50 0 0 Work load [lb] 0 2.2 4.4 6.6 8.8 11 Work load [lb] 0 2.2 4.4 6.6 8.8 11 300 300 250 250 Overhang: L4 [mm] Overhang: L4 [mm] m L4 500 mm stroke or less 200 200 600 mm stroke or less 150 150 100 100 600 mm stroke 50 50 0 0 Work load [lb] 0 2.2 4.4 6.6 8.8 11 Work load [lb] 0 2.2 4.4 6.6 8.8 11
Rod end: KJ (ISO 8139) l l3 [mm] Bore size [mm] Part no. d3 d1 H9 h d6 (Max.) b1 h12 l (Min.) a l3 32 KJ10D M10 x 1.25 10 43 28 14 20 4 15 40 KJ12D M12 x 1.25 12 50 32 16 22 4 17 50, 63 KJ16D M16 x 1.5 16 64 42 21 28 4 23 80, 100 KJ20D M20 x 1.5 20 77 50 25 33 4 27 125 KJ27D M27 x 2 30 110 70 37 51 4 36 172 A ISO (15552) Standard Air Cylinder: Non-rotating Rod Type Double Acting, Single/Double
-X 20m2 m3 Data Moment (Nm) M1 = F1 x L1 F1 F2 M3 = F3 x L3 F3 M2 = F2 x L2 L1 L2 L3 Maximum Load Weight Select the load from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions.
.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com CX Load weight (kg) Dm1 -X 20m2 m3 Moment (Nm) Data M3=F3 x L3 F3 F2 M1=F1 x L1 F1 M2=F2 x L2 L2 L1 L3
E U N I T T Y P E D I M E N S I O N S S I N G L E U N I T: DIN R A I L M O U N T No. of Sensors 2 3 4 5 6 L1 70 105 140 175 210 L2 105 140 175 210 245 L3 140 175 210 245 280 No. of Sensors 2 3 4 5 6 L1 70 105 140 175 210 L2 36 71 106 141 Courtesy of Steven Engineering, Inc. !
.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com Piston speed V (mm/s) M2 = F2 x L2 ML1C/M2, M3 Moment (Nm) M3 = F3 x L3 Piston speed V (mm/s) (How to calculate the load ratio) A.
Screw material SUS Screw dimensions M2.5 x 0.45 Recommended tightening torque [Nm] 0.27 to 0.36 L3 (Maximum screw-in depth) [mm] 2.5 L4 (Plate thickness) [mm] 2.1 3) Work piece mounting on top of the table.
Moment (Nm) Moment (Nm) Load weight (kg) M1 = F1 x L1 Piston speed V (mm/s) M2 = F2 x L2 ML1C/M2, M3 Moment (Nm) M3 = F3 x L3 Piston speed V (mm/s) (How to calculate the load ratio) A. Consider (1) max. load weight, (2) static moment, (3) dynamic moment (when stopper collides) when calculating the max. allowable moment and load weight.
Moment (Nm) Moment (Nm) Load weight (kg) M1 = F1 x L1 Piston speed V (mm/s) M2 = F2 x L2 ML1C/M2, M3 Moment (Nm) M3 = F3 x L3 Piston speed V (mm/s) (How to calculate the load ratio) A. Consider (1) max. load weight, (2) static moment, (3) dynamic moment (when stopper collides) when calculating the max. allowable moment and load weight.
Abbreviation Connection target (application) Description Supply the following power to L1, L2, L3. For the 1-phase 200 to 230VAC power supply, connect the power supply to L1, L2, and keep L3 open.
MY2C MY2H Load mass (kg) m1 MY3A MY3B Caution MY3M The cylinder should be mounted in m1 orientation if maximum dustproofing is required. m2 m3 Moment (Nm) M3=F3 x L3 F3 F2 M1=F1 x L1 F1 M2=F2 x L2 L2 L1 L3 Maximum Load Mass Select the load from within the range of limits shown in the graphs.