SMC Corporation of America
Elite Part Number Search
Search Results "ZA1071-Q15L-FP1A-M1"

M1 M2 Body (B) N Body (A) 2-R A port S N A port B port 2-R Y Y A1 M1 A2 SMC SMC J 27 H X For single vane: Above illustrations show actuators for 180 when B port is pressurized.

Operating Conditions Model : ML2B32 Load : 15N Speed , Va : 0.25m/s Pressure : 0.5MPa L1 : 0.05m L2 : 0.05m W W L1 L1 Loading Static Loading Dynamic Loading A Load due to W W3 B Momentum due to W M2 C Momentum due to we when stopping M3 V D M1 V 2.

A part z1 m1 = 20 x 3 x 4 x 2.7 x 10-6 = 6.48 x 10-4 (kg) Weight calculation m1 = a x b x c x Relative density IZ1 Inertial moment around Z1 axis IZ1 = {m1 (a2 + b2) / 12} x 10-6 = {6.48 x 10-4 x (202 + 32)/12} x 10-6 = 2.21 x 10-8 (kg.m2) = 2.21 x 10-8 + 6.48 x 10-4 x 16.42 x 10-6 = 0.20 x 10-6 (kg.m2) IA Inertial moment around Z axis IA =IZ1 + m1r12 x 10-6 z f2 z2 B part r2 = 23.5(mm)

Calculate the moment of inertia of attachment. z r1 Material of attachment: Aluminum alloy (Specific gravity = 2.7) A part z1 r1 = 37 (mm) Calculation of weight m1 = a x b x c x Specific gravity m1 = 40 x 7 x 8 x 2.7 x 10-6 = 0.006 (kg) Moment of inertia around Z1 axis IZ1 = {m1(a2 + b2)/12} x 10-6 Iz1 = {0.006 x (402 + 72)/12} x 10-6 = 0.8 x 10-6 (kgm2) IA = 0.8 x 10-6 + 0.006 x 372 x 10

Calculate the moment of inertia of attachment. z r1 Material of attachment: Aluminum alloy (Specific gravity = 37 (mm) r2 = 2.7) A part z1 m1 = 40 x 7 x 8 x 2.7 x 10-6 = 0.006 (kg) Calculation of weight m1 = a x b x c x Specific gravity Moment of inertia around Z1 axis IZ1 = {m1(a2 + b2)/12} X 10-6 Iz1 = {0.006 x (402 + 72)/12} x 10-6 = 0.8 x 10-6 (kgm2) IA = 0.8 x 10-6 + 0.006 x 372 x 10

Calculate (1) (Wmax) from the graph of max. payload (W1, W2, W3) and calculate (2) and (3) (Mmax) from the maximum allowable moment graph (M1, M2, M3).

Calculate (1) (Wmax) from the graph of max. payload (W1, W2, W3) and calculate (2) and (3) (Mmax) from the maximum allowable moment graph (M1, M2, M3).

Model M1 M2 M3 W1 W2 W3 W4 ML1C25 14.7 4.90 4.90 20 12 3 10 ML1C32 29.4 9.80 9.80 32 19 5 16 ML1C40 58.8 19.6 19.6 50 30 8 25 Caution on Design ML1C/M1 Allowable moment and Load Mass Maximum Allowable moment and Maximum load mass varies depending on mounting orientation, piston speed, etc.

Load at end of lever + m a + K 3 a1 I = m1 12 4a2 + b I = m1 + m2 12 4a1 + b (Example) When shape of m is a 5 2r sphere refer to 7 and K = m 5. Thin rectangular plate (rectangular parallelopiped) Position of rotational axis: Through the center of gravity and perpendicular to the plate (also the same in case of a thicker plate) 10.

M1 Weight (g) ASV220F-U10/32-03 ASV220F-U10/32-07 5/32" 1/4" 10-32 UNF 10-32 UNF 8 8 9.3 12 9.6 9.6 22.8 23.6 27.6 28.4 11.1 11.1 31.4 31.4 28.6 28.6 27.7 27.7 24.9 24.9 12.7 13.7 8 9 Reference U10/32 thread dimensions after installation.

A part z1 m1 = 20 x 3 x 4 x 2.7 x 10-6 = 6.48 x 10-4 (kg) Weight calculation m1 = a x b x c x Relative density IZ1 Inertial moment around Z1 axis IZ1 = {m1 (a2 + b2) / 12} x 10-6 = {6.48 x 10-4 x (202 + 32)/12} x 10-6 = 2.21 x 10-8 (kg.m2) = 2.21 x 10-8 + 6.48 x 10-4 x 16.42 x 10-6 = 0.20 x 10-6 (kg.m2) IA Inertial moment around Z axis IA =IZ1 + m1r12 x 10-6 z f2 z2 B part r2 = 23.5(mm)

Calculate the moment of inertia of attachment. z r1 Material of attachment: Aluminum alloy (Specific gravity = 37 (mm) r2 = 2.7) A part z1 m1 = 40 x 7 x 8 x 2.7 x 10-6 = 0.006 (kg) Calculation of weight m1 = a x b x c x Specific gravity Moment of inertia around Z1 axis IZ1 = {m1(a2 + b2)/12} X 10-6 Iz1 = {0.006 x (402 + 72)/12} x 10-6 = 0.8 x 10-6 (kgm2) IA = 0.8 x 10-6 + 0.006 x 372 x 10

A part z1 m1 = 40 X 7 X 8 X 2.7 X 10-6 Calculation of weight m1 = a X b X c X Specific gravity = 0.006(kg) Iz1 = {0.006 X (40 2+7 2)/12} X 10-6 Moment of inertia around Z1 axis = 0.8 X 10-6 (kgm 2) = 0.8 X 10-6+ 0.006 X 37 2 X 10-6 Iz1 = {m1(a 2+ b 2)/12} X 10-6 IA = 9.0 X 10-6(kgm 2) Moment of inertia around Z axis IA = IZ1 + m1r1 2 X 10-6 z r2 Z2 B part r2 = 47(mm) m2 = 5 X 10 X 12 X

(mm) Model H Bracket mounting dimensions Q Weight (g) 1(P) R 2(A) 2(A) R 3(R)* L1 L2 L3 L4 L5 L6 M1 M2 Bracket assembly no.

U N I O N Y KQU (KQ2U) Applicable Model D1 D2 L1 L2 P Q M1 M2 Effective Orifice Tube OD mm (mm2) a b Nylon/Urethane 3.2 4 KQU23-04 9.6 10.4 33.5 17.5 9.6 9 15.5 16 3.2/2.7 4 6 KQU04-06 10.4 12.8 35 18 10.4 9.7 16 17 4.2/4.2 6 8 KQU06-08 12.8 15.2 39.5 20 12.8 11.7 17 18.5 13.4/13.4 8 10 KQU08-10 15.2 18.5 45 24.5 15.2 13.7 18.5 21 25.6/17.7 10 12 KQU10-12 18.5 20.9 49 27.5 18.5 16.1 21 22

A part z1 m1 = 20 x 3 x 4 x 2.7 x 10-6 = 6.48 x 10-4 (kg) Mass calculation m1 = a x b x c x Relative density Z1 Inertial moment around Z1 axis Z1 = {m1 (a2 + b2) / 12} x 10-6 = {6.48 x 10-4 x (202 + 32)/12} x 10-6 = 2.21 x 10-8 (kg.m2) = 2.21 x 10-8 + 6.48 x 10-4 x 16.42 x 10-6 = 0.20 x 10-6 (kg.m2) A Inertial moment around Z axis A = Z1 + m1r12 x 10-6 z f2 z2 B part r2 = 23.5(mm) Mass

Calculate the moment of inertia of attachment. z r1 Material of attachment: Aluminum alloy (Specific gravity = 2.7) A part z1 r1 = 37 (mm) Calculation of weight m1 = a x b x c x Specific gravity m1 = 40 x 7 x 8 x 2.7 x 10-6 = 0.006 (kg) Moment of inertia around Z1 axis Z1 = {m1(a2 + b2)/12} X 10-6 z1 = {0.006 x (402 + 72)/12} x 10-6 = 0.8 x 10-6 (kgm2) A = 0.8 x 10-6 + 0.006 x 372 x 10-6

L B O W T Y P E Model Port thread Tube O.D (mm) Effective area 4 6 8 10 12 In-Out Out-Exh ASV120F-M3 M3x0.5 0.3 0.3 ASV220F-M5 M5x0.8 1.3 1.3 ASV310F-01 PT1/8 7 8 ASV310F-02 PT1/4 7 8 ASV410F-01 PT1/8 13.5 14 ASV410F-02 PT1/4 13.5 14 ASV410F-03 PT3/8 13.5 14 ASV510F-02 PT1/4 23 27 ASV510F-03 PT3/8 27 29 ASV510F-04 PT1/2 27 29 Model Applicable T H D1 D2 L1 L2 L3 L4 *A M1

H L1 L2 L3 L4 L5 L6 M1 M2 Q Model C D J E F G K 1(P)2(A) 2(A)3(R) 18 1(P) 2(A) 4 4 47.6 23.8 23.8 16.5 15.8 15.8 11 3.4 1.2 15 VHK-B1A 44.5 14.5 1 27 22 16.5 26 41 3.5 VHKl-04F-04F VHKl-06F-04F 18 6 4 6 41 48 48.6 24.3 23.7 16.5 3.5 16.8 15.8 11 5.1 1.2 15 16 VHK-B1A 44.5 14.5 1 27 22 16.5 26 VHKl-06F-06F 24.3 16.8 7.2 VHKl-08F-06F 18 8 6 8 41 50.5 52.4 26.2 24.3 16.5 3.5 18.7 16.8 11 9 1.2